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ABSTRACT

Multilingual access to information and services is a key
requirement in any pervasive or ubiquitous computing
environment. In this paper we review the design of a
common alphabet for up to fifteen languages and describe its
application to multilingual speech recognition in low-
resource devices in real-time. We give an overview of the
special requirements for acoustic modeling in such
environments and present initial results of a technique that
aims on a more efficient discrimination between languages
in training while keeping low memory footprint. We also
report the usefulness of a multilingual recognizer as a
language-independent system to bootstrap a new language.

Index Terms— multilingual speech recognition, common
phone alphabet, spoken language identification, language
independent recognizer

1. INTRODUCTION

In areas like Europe, with a huge number of consumers
speaking different languages, there has arisen a particular
interest both in multilingual speech recognition [1] and in
the fast bootstrapping of new languages [4]. Moreover, the
proliferation of speech applications on low-resource devices
like palm-size computers, mobile phones, in-car navigation
systems, etc puts additional emphasis on developing ASR
systems with small memory footprint and low cpu usage [7,
2]. These constrains make the simple combination of
monolingual systems unfeasible. The challenge is then to
design a multilingual ASR system with the complexity of a
monolingual system which is still capable of recognizing
several languages (let’s say: UK, GR, FR, ES, IT …) equally
well, i.e., with a level of accuracy comparable with their
counterpart monolingual systems. Finally (and no less
importantly), such a multilingual recognizer can be
considered as a language independent or language-neutral
system [4] that makes it possible to reduce time-to-market
cycle for new languages.

Table-1. Number of vowels and consonants for seven
languages : Spanish (Es), Italian (It), British English (En)
German (Gr), French (Fr), Dutch (Nl) and Swedish (Se).

The remainder of the paper is organized as follows: in
Section 2 we give a brief overview of the common phone
alphabet used in this work. In Section 3 we focus on
multilingual acoustic modeling and present experimental
results. In Section 4 we outline a technique aiming to
improve the acoustic separation between languages in
training. In Section 5 we consider a multilingual system as a
language-independent system to bootstrap a new language.
Finally, Section 6 gives a conclusion and some prospects of
future work.

2. COMMON PHONOLOGY

The definition of a common phonetic alphabet for
multilingual speech recognition has to consider two
conflicting design issues: on one hand the different sounds
of each language should be covered separately in order to
achieve high recognition accuracy, while on the other, as
many phones as possible should be shared across languages
both for efficient utilization of training data and to achieve
reasonably small acoustic models.
We designed a common phonetic alphabet starting from the
existing phonetic alphabets for seven languages (Arabic,
British English, French, German, Italian, (Brazilian)
Portuguese, and Spanish) [1,3] with further extensions to
cover additional languages (fifteen in total) including
American English, European Portuguese, Japanese, Greek,
Czech, Finnish, Norwegian. For that purpose, the language
specific phone sets were first simplified following available
SAMPA transcription guidelines [6]. With this approach,
languages were affected to different degrees: while the

total Es It En Gr Fr Nl Se
vow 77 10 10 12 14 17 14 23
con 69 28 28 24 26 19 21 23
total 146 38 38 36 40 36 35 46
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Table-2. Number of shared consonants (upper right corner)
and vowels (lower left corner) of the merged alphabet.

Table-3. Number of vowel (vow) and consonant (con)
phonetic units that belong to only one of the seven
languages.

native French phone set remained unchanged, we gave up
syllabic consonants for German, and at the same time
introduced new diphthongs for British English. In a second
step, language specific phones mapped to the same SAMPA
symbol were merged into a common unit. This yielded a
common phonetic alphabet of 146 phones (77 vowels, 69
consonants) for the fifteen languages.
Table-1 shows the phones actually used for the seven
languages of interest in this work. We represented all long
vowels and diphthongs as a sequence of two short vowels
(but for Swedish). In doing so, the sharing factor or average
number of languages that contribute to the training data for
each of the 94 phones (64% of the total 146 phones) turned
out to be 2.86. The phone sharing factor becomes a trade-off
between enhancing the differentiation between languages
and reducing the complexity of the system because of both
reliable estimation of its parameters and limited resources.

3. MULTILINGUAL ACOUSTIC MODELING

Acoustic modeling for multilingual speech recognition, to a
large extent, makes use of well established methods for
(semi-) continuous Hidden-Markov-Model training.
Methods that have been found of particular interest in a
multilingual setting include, but are not limited to, the use of
multilingual seed HMMs, the use of language questions in
phonetic tree growing, polyphone decision tree
specialization for a better coverage of contexts from an
unseen target language, and the determination of an
appropriate model complexity by means of a Bayesian
Information Criterion (BIC) [10]; cf., for example, [1,5] for
an overview and further references.

The training of a rank-based speech recognition system [9]
is a bootstrap procedure that comprises feature extraction,
the construction of a set of context dependent, allophonic
HMMs and the subsequent estimation of the continuous
density Gaussian mixture parameters.
The acoustic models reported in this paper were designed
for medium-vocabulary, grammar-based recognition in low-
resource devices [7]. As a prerequisite, the seven languages
considered use a common acoustic front-end that computes
13 MFCC (including C0) and their first and second order
derivative every 15 miliseconds. The training data are
Viterbi-aligned against their transcription and each acoustic
vector is context-tagged. The context for a given phone is
restricted to adjacent phones and the system uses within-
word context only, i.e., context does not extend over word
boundaries. The allophones are identified by growing a
decision network (with binary phonetic context questions)
using the context-tagged feature vectors. Each terminal node
(or leaf) of the network is modeled by a single state HMM
with a self loop and a forward transition. The acoustic
observations that characterize the training data at each leaf
are modeled by a Gaussian Mixture Model (GMM), with
diagonal covariance matrices to give an initial acoustic
model. The complexity of the model is selected by the use of
BIC criterion. Starting with these initial set of GMMs
several iterations of the standard Baum-Welch EM
algorithm is run to refine the model.
Using the outlined method, the training of the multilingual
models was performed as follows :

1. After mapping the language dependent phone sets
and phonetic context questions and rewriting of
training baseforms initial monolingual models were
trained.

2. The language specific training vocabularies were
merged (a language tag added to each spelling) and
the monolingual models were used to viterbi-align
the training data from each language.

3. Based on the (monolingual) alignments a common
decision network was constructed to obtain
multilingual seed HMMs.

4. Data from all languages was used for the forward-
backward refinement of the initial HMM
parameters.

5. In the experiments described later on, these sets of
multilingual HMMs were also used for the viterbi-
alignment step in a further iteration.

For the evaluation we aimed to use roughly the same amount
of training data (in-car recordings at different speeds and
conditions) for each of the seven languages. However,
because of heterogeneous databases, we ended up using
50000 utterances for each language which yielded a
minimum of 16.4 hours for Swedish (Speecon database) to a
maximum of 44.1 hours for Spanish (~50% phonetically rich

Es It En Gr Fr Nl Se
Es - 18 19 18 15 17 14
It 10 - 18 20 16 17 14
En 3 3 - 20 17 20 17
Gr 4 5 4 - 17 19 18
Fr 7 7 4 10 - 17 14
Nl 5 5 5 9 9 - 17
Se 2 2 5 5 5 8 -

total Es It En Gr Fr Nl Se
vow 77 4 6 - 2 1 - 5
con 69 - - 3 3 4 - 12
total 146 4 6 3 5 5 - 17
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Table-4. Word error rate (WER %) for in-car data

text sentences). Other languages were in the range 25h-35h .
No attempt was made to standardize the test scenarios.
Our efforts on the creation of acoustic models that allow of
the seamless recognition of the seven languages are
summarized in Table-4. All systems have ~1K leaves.
Monolingual systems comprise of ~14K gaussians, whereas
multilingual systems have ~20K gaussians. M20 is a
bilingual Spanish-English (Es+En) system, M21 is a
bilingual Spanish-Italian (Es+It), M22 is a bilingual
German-French (Gr+Fr), M3 is M21+En, M5 is M3+Gr+Fr
and M7 is M5+Nl (Dutch)+Se (Swedish).
In the first row of Table-4, we have the monolingual systems
decoding their respective monolingual test sets. Those
figures give a baseline for the multilingual systems to
compare with. The next rows show the degradation when
incorporating more languages to the multilingual builds. The
degradation observed might be explained to some extend by
the use of less dedicated gaussians per language (we aimed
to accommodate the languages in ~20K gaussians). Other
source of degradation might come from the common/shared
leaves (gausssians) between languages. To assess that point,
we built a monolingual Es system (M7Es) by re-using the
multilingual decision network of M7. WERs of Mono Es
(2.2) and M7Es (2.4) are now closer. Both monolingual
systems (~14K gaussians) were built with the same data. If
we compare again Mono Es (2.2) with M7 (3.1), now we
could split the degradation in: 0.2% (~9% relative) due to a
multilingual decision network (instead of a true
monolingual) and 0.7% (~32% relative) due to the influence
of the data of the other languages (in the shared leaves, the
gaussians were generated with a mixture of data from
several languages instead of monolingual data).

4. LANGUAGE DEPENDENT LABELLING

The comparison of M7Es with M7 in Table-4 suggests that
adding more data from other languages to the shared leaves
of the multilingual decision network did not help a particular
language by introducing confusion (sparse data) for the

Table-5. Baseline systems (1,2,3) ; Models for language
dependent labeling (4,5,6) ; LDL models (7,8,9)

gaussian generation. It seems to point out that there is a
margin for improvement if we manage to enhance the
separation/discrimination of gaussians between languages.
Then, for a bilingual case, the proposed algorithm, initially
presented in [8] for gender clustering, comprises of the
following steps:

1. Create three systems: a bilingual system (with its
bilingual decision network and its bilingual
gaussians) and two monolingual systems re-using
the bilingual decision network.

2. For each leaf of the bilingual decision network,
compute a measure of statistical distance between
the two sets of monolingual gaussians associated at
each leaf.

3. Merge the two sets of monolingual gaussians at
each leaf. Then, starting from the leaf with the
lowest distance, replace the merged monolingual
gaussians with their counterpart bilingual ones until
a target number of gaussians is reached.

In training, the aim is to enhance the language separation by
keeping the bilingual gaussians only for those leaves whose
monolingual gaussians are statistically close enough.
Otherwise, we merge the monolingual gaussians. This
merging mechanism tries to keep the final number of
gaussians under a certain limit as well (footprint issues). At
runtime, the computational cost is low and the aim is to be
able to identify the spoken language so that (only) the
gaussians of the correct language are used (highest weight)
to label the input audio (Language Dependent Labelling, or
LDL).
Table-5 summarizes the acoustic models created to evaluate
the performance of the algorithm. The number in parenthesis
stands for number of gaussians. Several LDL models were

Es En It Gr Fr Nl
Mono 2.2 7.7 11.7 7.7 4.9 7.1
M20 2.3 9.1 - - - -
M21 2.4 - 13.3 - - -
M22 - - - 8.9 6.4 -
M3 2.5 9.5 13.4 - - -
M5 3.0 11.6 14.4 10.3 8.6 -
M7 3.1 13.4 14.9 12.1 9.1 10.1
M7Es 2.4 - - - - -

Es En

1 - Mono Es (14K) 1.9 -

2 - Mono En (12K) - 7.1

3 - Bilingual Es+En (16K) 2.2 8.6

Models for LDL merging

4 - Mono Es (8K) 2.1 -

5 - Mono En (8K) - 8.1

6 - Bilingual Es+En (10K) 2.3 8.9

LDL models

7 - LDL Es+En (14K) 2.3 10.0

8 - LDL Es+En (15K) 2.3 10.2

9 - LDL Es+En (16K) 2.4 8.9
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Pt
ML5 (Es+It+En+Gr+Fr) 48.5
ML7 (Es+It+En+Gr+Fr+Nl+Se) 40.7
MAP adaptation of ML7 26.5
Mono Pt 10.4

Table-6. Word Error Rate (WER %) of Portuguese
decodings

merged considering different target of number of gaussians.
The LDL system (9) is just the union of the two monolingual
systems (4,5), whereas LDL systems (7) and (8) contain
some bilingual gaussians from model (6). The initial results
in Table-5 show a LDL system (9) that performs similarly to
a non-LDL system of comparable size (3), although we
should enhance the language identification process to get
real benefits from this technique.

5. LANGUAGE INDEPENDENT SYSTEM

A multilingual recognizer can be considered as a language-
independent or language-neutral system [4] for efficient
portability to a new target language by reducing time-to-
market cycles. Different approaches can be followed
depending on the amount of data (and time) available for the
new target language:

- Cross-language transfer: Make use of the multilingual
system to recognize the new language directly (i.e., without
any training data of the new language).
- Language adaptation: The multilingual system is adapted
with limited amount of data of the new language. It also
assumes that the multilingual system have a good coverage
of the phones of the new language.
- Bootstrapping: Rebuild the system with large amount of
training data by using the multilingual system as seed model.

Table-6 illustrates the experiments carried out to bootstrap
Portuguese (Pt) as the new/unseen language. It is interesting
to note that the multilingual system ML7 outperforms ML5.
It seems to suggest that we might boost the cross-language
capabilities of multilingual systems by incorporating more
languages (and then increasing the phone coverage) into the
multilingual systems. Not surprisingly, rebuilding the system
with large amount of data of the new language yields the
best results.

6. CONCLUSION

In this paper we have presented initial efforts towards
multilingual speech recognition in low-resource devices.
Experiments that aim on the seamless multilingual

recognition of up to seven languages have proven the
feasibility of the approach. We have also presented a data-
driven technique that aims at a more efficient discrimination
between languages in training with low computational cost
at runtime, which highlights the need for further research in
the language identification process in order to boost the
performance of the technique. Finally, we have explored
different approaches to bootstrap a new language from a
multilingual recognizer.
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