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ABSTRACT

Automatic Speech Recognition(ASR) systems are limited in
the computational power and memory resources, especially in
low-memory/low-power environments such as personal digi-
tal assistants. The parameter quantization is the one of the
ways to achieve these conditions. In this work, we com-
pare various subvector clustering procedures for the parame-
ter quantization in the ASR system and propose a data-driven
subvector clustering technique based on the entropy mini-
mization. The Cross-Entropy(CE) method is a good choice
for the combinatorial optimization problems. We compare
the ASR performance on Resource Management(RM) speech
recognition task and show that the proposed technique pro-
duces better performance than previous heuristic techniques.

Index Terms— subvector clustering, entropy minimiza-
tion, Cross-Entropy method

1. INTRODUCTION

Currently the most widely used statistical model for Auto-
matic Speech Recognition is continuous hidden Markov model
(CHMM). CHMM provides the high recognition accuracy,
but requires much training data and memory. In order to ap-
ply this model to the mobile devices, it is necessary to reduce
the memory size for model representation, for example the
number of parameters in acoustic models.

A simple solution without the effect on the performance is
to use less bits per parameter than the typical model. There-
fore more advanced numerical representation is necessary in
the parameter quantization. Several techniques have been used
to achieve such quantization. Scalar quantization jointly clus-
ters the individual elements of parameter vectors (means and
diagonal covariances) in order to achieve lower memory re-
quirements [1]. The subvector clustering and quantization has
been applied to this problem [2]. In most cases, the subvec-
tors clustering in the quantization used a greedy algorithm
that chooses pairs that are most strongly correlated [3].
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In this paper, we evaluate and compare various methods
for the subvector clustering of parameters in CHMM based
ASR system. Specifically, we observe the systematic data-
driven vector clustering techniques based on entropy mini-
mization and compare their performance on Resource Man-
agement speech recognition task [4]. We propose new en-
tropy minimizing parameter quantization method and show
that this method is simple but find near optimal subvectors
effectively.

In section 2, we describe previously published subvector
clustering algorithms and Section 3 explains our subvector se-
lection algorithm. Section 4 describes the RM speech corpus
used and the experimental setup. In section 5 we show the
memory-performance tradeoff results of our experiments. Fi-
nally, we draw our conclusions in Section 6.

2. SUB-VECTOR QUANTIZATION ALGORITHMS

In the general problem of sub-vector quantization, there are
given N vectors v(9), i = 1,..., N-each of dimension D-
which are to be quantized in some way. These vectors consist
of the N means or N diagonal covariances in a Gaussian-
mixture HMM-based ASR system. In the sub-vector selection
algorithm, one decides upon M subsets {C; }jj‘il of the index
setS £ {1,2,..., D}, where C; C S and where C;NC,,, = ()
forall j # mand U;C; = S. For each subvectors, there are K
code words. This means that the goal is to find the functions

fo, i) =tk 0<j<MI1<k<KYi (1)

where vg]) is a partition of the vector v(*) corresponding to
the elements within C;, and 17&, is the kth codeword for that
partition. If |C;| = 1 Vj, then this corresponds to elemen-
twise scalar quantization and if |C;| = D, then this corre-
sponds to full vector quantization. Anything in between, it is
called as subvector quantization. In this general scheme, any
vector element may be clustered with any set of other vector
elements. The goal is to find the number of clusters M, the
clusters themselves {C}; }j‘il satisfying the above, the code-
book size K (assumed to be the same for each cluster), and
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the quantization function {fc, (-)}}Z,. The above quantities
need to be found such that both the total memory and com-
putation required are minimized, and also such that the word
error rate (WER) increment is at a minimum [3].

From the above, there are broadly two separate issues to
solve. The first is how to select the set of subvectors {C; }}Z -
that is called the subvector clustering problem. The second
issue is how to perform the quantization with the selected set.
In this work we focused on the first issue.

2.1. Subvector Clustering

Supposing that v(*) is a sample from a random variable V'
drawn from some distribution p(v), the best quantization-in

terms of number of bits per parameter-is given by % =

w where H (-) is the entropy function [5]. As-
suming sufficient samples v(?), it can be shown by the law
of large numbers that vector quantization is optimal. It will
minimize the overall distortion between the original and the
quantized data. There are two problems, however, with this
scheme in practice. First, there is rarely enough data given the
high dimensionality D of the parameter vectors. Second, the
cost of storing the code book tables becomes prohibitive as the
number of bits per quantized vector g, increases. Therefore
subvector quantization is an attempt to achieve better results
than scalar quantization while avoiding the problems men-
tioned above [3].

Fixing a particular clustering {C;}}1,, the smallest num-
ber of bits per parameter possible under the ideal sub-vector
quantization scheme is given by ﬁ Zi\il H(Vg,). By the
entropic inequalities, it can be shown that:

M D

H(Ve,) <> HV) ()

j=1 j=1

An additional problem in designing the best subvector set
{C;}}L, is that it is an intractable problem. Even in the case
where |C;| = 2, finding the optimal clustering has exponen-
tial cost. One of the existing approaches is to manually divide
the parameters into the subsets based on the prior knowledge
about the vector elements [6]. A greedy algorithm finds clus-
ters that have low entropy [7].

2.2. Greedy-n Pair

In the case where |C;| = 2 Vj, minimizing entropy is equiv-
alent to maximizing pair-wise mutual information [8]. The
formulation is H(V,,, V) = H(Vin) + HVy) — I(Vi; Vo)
where I(V,,;V,,) is the mutual information between V,,, and
Vp. This algorithm performs a tree search with branching
factor n. The nodes of the tree represent the pair of vector
elements with the following restriction: No two nodes on the
path from the root to a leaf may contain the same element.
The n children of a node are the top n ranked pairs in terms of

the mutual information between the two corresponding vector
elements. The goal is to find the path from the root to the leaf,
this has the maximum sum of the mutual information values
of all pairs along the path. This algorithm is summarized as
follows [3]:

1) Sort the nodes in decreasing weight

2) Recursively, find the node that maximizes the sum of
its weights and the weight of the best path below it.

3) Assign each node in the path with the maximum weight
toa2-d

2.3. Greedy-n m-let

Greedy-n m-let is the general case of Greedy-n Pair algorithm
[9]. In the algorithm, n is the branching factor and m is the
size of the clusters formed. The measure of dependency can
be either average pairwise mutual information or the joint en-
tropy over m variables.

2.4. Maximum Clique Quantization

The previous schemes require a uniform subvector size even
though smaller or larger subvectors might exhibit a higher
degree of correlation. The maximum-clique scheme adopts
a structural approach which prunes the dependency graph.
Therefore a part of edges above the threshold will remain [3].
A maximum clique finding algorithm is applied to the sparse
graph. When there are overlapping cliques, the one with the
maximum average mutual information is chosen and its ele-
ments are removed from the graph.

Applying above algorithms, they have some constraints. In
Greedy-n m-let, each subvector has the same dimension even
though smaller or larger subvectors might exhibit a higher de-
gree of correlation. In maximum clique partition, the number
of subset(M) didn’t controlled. Next section, we explain gen-
eral subvector clustering algorithm which don’t need these
constraints.

3. SUBVECTOR CLUSTERING USING THE
CROSS-ENTROPY METHOD

3.1. Cross-Entropy method

The Cross-Entropy(CE) method is a general Monte Carlo ap-
proach to combinatorial and continuous multi-extremal opti-
mization and importance sampling [10]. This method can be
applied to static and noisy combinatorial optimization prob-
lems such as the traveling salesman problem, DNA sequence
alignment, the max-cut problem as well as continuous global
optimization problems with many local extrema. The CE
method consists of two phases:
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1) Generate arbitrary number of random data samples (tra-
jectories, vectors, etc.) according to a specified point
distributions.

2) Update the parameters of the random mechanism based
on the data to produce a better sample in the next itera-
tion. This step involves minimizing the Cross Entropy
or Kullback-Leibler divergence.

3.2. Problem Formulation

The goal of sub-vector clustering algorithm is maximizing
mutual information over {C;}}, subsets. To apply the CE
method for solving the graph partition problem, the object
function value must be monotonic decreased or increased as
graph splitting is repeated. However the object function using
mutual information doesn’t satisfy this condition. However
this condition can be satisfied with the reciprocal of mutual
information instead of the mutual information itself. To com-
pare the value of each subset, we use the sum of all pair-wise
the reciprocal of mutual information in subset C;.

Given the dependency graph G we partition the nodes of
the graph into the arbitrary {C;}}, subsets such that the sum
of the weights of the edges within each subset is minimized.
Mathematically it can be written as:

G = (S, E) S = {V17V27 ...,VD} and £ = {I(%,VJ)

Vi, Vi # i},
M

min{JE(C) = Y JE(C)} 3)
=1

where
JEC)= Y @

JEC;,kEC;,j#k I(Vj Vi)

3.2.1. Random subvector partition generation

The first step in the CE method is generating random subvec-
tor partitions based on D independent M point distributions.
(Total number of point distributions is D x M for this algo-
rithm.)

F(P), P;=(Py,...,Pu;) 5)

where "M Py =1,P; >0,1<j<D1<i<M

1) Generate a D-dimensional random vector X from F'(P)
with independent components X; (1 < j < D, 1<
X; < M)

2) From X construct partitions C; such that the vector C;
contains the set of indices {j : X; =i}

3) Calculate the entropy of the sample function associated
with the random partition C' using equation (4)

3.2.2. Main algorithm

1) Choose an initial reference vector P, say the compo-
nents Py = 1,P; = (1 <i < M,2<j < D).
Generate N random vectors X” (1 < n < N) from
F(P) and calculate their corresponding joint entropies.

2) Find the maximum 7y s.t. E{I(JE(X"™) <)} > p,
where I is the indicator function and p is the rate of
important samples. Sett = 1.

3) Calculate the following equation and update the point
distributions.

ZlgnSN:X]ﬂzi I(JE(X™) <7vi-1)

P, =
ElSnSN I(JE(X™) < v-1)

(6)

4) Generate new N random vectors X" from F(P) and
find the solution v; such as step2.

5) Forsomet > k and k(=5), if 7t = -1 = -+ - = V4—k»
stop and deliver 7, as an estimate of . Otherwise, set
t=t+1 and go to Step 3).

4. EXPERIMENTS

4.1. Database and Initial System Configuration

To show the effectiveness of the proposed method, we per-
formed several experiments on the speaker independent word

recognition task using the Resource Managements (RM) database.

For initial CHMMSs, we trained word-internal State-Clustered
Triphone models which are 3-state left-to-right HMMs with
6 mixture Gaussians per state (the number of total mixtures
is 9492) [4] using 39-dimensional feature vectors (12 MFCCs
and log energy, their first and second order time derivatives).
The baseline system showed 2.81% word error rate(WER)
with 3640 KB memory usage.

4.2. Experimental Results

4.5

a3 = —&— greedy —
at —— proposed | |
- —@— CHVM

39

37 r

35

WER(

33

3.1

2.9

27 r

25

M=13, K-64 M=13, K=128 M=13, K-256 M=13, K=512

Fig. 1. Word Error Rate on 13 subvectors (K : No. of code-
words)
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Fig. 2. Word Error Rate on 7 subvectors (K : No. of code-
words)

We compared it with two kinds of conventional algorithms
described in section 2. Figure 1 shows the WER in a case
where the uniform subvector size is the most properable due
to the orthogonal feature characteristic. Figure 2 shows the
WER in a non-uniform subvector size. In our approach mu-
tual information is indirectly maximized so first figure shows
a little performance degradation. However in the second case,
our method always outperformed. Next we compared it with
the maximum clique quantization. As shown in the table
1, proposed method showed always better performance be-
cause each subvector always consists of clique in our method.
Therefore we can assume that the maximum clique quantiza-
tion is the subset of our algorithm.

The memory needed in each algorithm is compared in ta-
ble 2. It can be seen that the memory efficiency of subvector
clustering algorithms have superiority over other methods.

Finally we considered the minimum computation time.
Previous algorithms need at most pC'p/ys calculation to find
the maximum parts in the graph. If D is large and D/M is a
middle, for example D = 39 and D/M = 13, it needs a lot of
time to evaluate the graph. However, our method only needs
to generate D X M parameters so it can solve the problem
quickly.

Table 1. Word Error Rate of the maximum clique quantiza-
tion (threshold=30%)

[ No. of codwords | 64 [ 128 | 256 [ 512 |
5.04 | 433 | 3.99 | 3.94
4371379 | 336 | 33

Table 2. Memory usage for the whole model (KB)
’ No. of codewords \ 64 \ 128 \ 256 \ 512 ‘

13 subvectors 221 | 270 | 339 | 447
7 subvectors 157 | 173 | 228 | 323

maximum clique
proposed method

5. CONCLUSION

In this paper, we compared various subvector clustering algo-
rithms and proposed a new data-driven subvector clustering

technique using the Cross-Entropy method. This technique
doesn’t need any constraints used in previous algorithms such
as uniform subvector size and the pruning rate of the edges.

In various experiments, the proposed algorithm produced
better performance than previous heuristic techniques. In the
future, we need to improve the optimizing and find a better
measure which can describe the relationship between the sub-
vector clustering and the vector quantization errors better than
the entropy-based measure.
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