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ABSTRACT

This paper deals with the task of detection of a given keyword

in continuous speech. We build upon a previously proposed

algorithm where a modified Viterbi search algorithm is used

to detect keywords, without requiring any explicit garbage or

filler models. In this work, the concept of durational entropy

is used to further discard a large fraction of false alarm errors.

Durational entropy is defined as the entropy of the distribution

of state occupancies. A method to recursively compute it for

all Viterbi paths is also presented in this paper. Experimental

results on one hour of broadcast news data suggest that dura-

tional entropy constraints can indeed be used to avoid a large

number of false alarms errors at a minimal cost of degradation

in keyword detection accuracy.

Index Terms— Hidden Markov models (HMM), Viterbi

decoding, entropy, maximum likelihood decoding, speech recog-

nition.

1. INTRODUCTION

Keyword spotting has remained an interesting and challeng-

ing research task for some time. Although quite similar to

speech recognition in nature, the major challenge in keyword

spotting is rejection of non-keyword (out-of-vocabulary (OOV)

items in continuous speech recognition (CSR) terminology)

events. The modeling of these non-keyword events is gener-

ally referred to as garbage or filler modeling in literature.

Many hidden Markov model (HMM) based approaches

have been proposed in literature where an explicit garbage

model is used [1, 2, 3]. There also have been other approaches

which do not employ explicit garbage model but rely on a

non-parametric representation of non-keyword events [3, 4].

In HMM based approaches with a garbage model, Viterbi

algorithm [5] is generally used to find segmentation in terms

of garbage events and keyword. To find this segmentation,

one requires information about begin and end-points of the

utterance, which is generally assumed available in most of the

previous work. Also, some of these techniques have imprac-

tical heuristical assumptions such as at most one occurrence

of a keyword per utterance [4].

This work builds upon previous work in [6] which takes

care of some of the shortcomings mentioned above. Some

advantages of this algorithm are:

• No filler or garbage model required, so there are no pa-

rameters or hyper-parameters (in case of non-parametric

representation) to be learnt from training data.

• No backtracking required, so no knowledge of begin

and end points of the utterance are required and any

keyword can be located as and when it occurs in a time-

synchronous manner.

• The algorithm needs very low computational and mem-

ory resources.

In this work, we propose using durational entropy as an

additional cue toward reliability of a hypothesized instance of

a keyword. Here, the durational entropy is defined as entropy

of the distribution of state occupancies (number of frames as-

sociated with each HMM state in a Viterbi path). The basic

idea is not only to look at likelihood score of a Viterbi path

but also analyze how well each state has contributed in build-

ing up that score. Resulting durational entropy will be lower

for more uniform contributions of different states to a log-

likelihood score. In our experiments (Figure 2), this entropy is

generally significantly lower for correctly detected instances

as compared to that of false alarm situations.

This paper is organized as follows: Section 2 presents a

brief review of the basic keyword algorithm proposed in [6].

Section 3 then defines durational entropy and presents a method

to compute this entropy, recursively, for every Viterbi path

in the forward course of the Viterbi algorithm. Section 4

presents the experimental setup and also discusses threshold-

ing issues.

2. KEYWORD SPOTTING ALGORITHM

The algorithm is based on hidden Markov model (HMM) rep-

resentation of a keyword. It is generally achieved by concate-

nating HMMs of underlying phonemes or other subword units

in a left-to-right fashion. The Viterbi algorithm has to be mod-

ified for this algorithm since it does not involve any garbage

or filler model (or competing hypothesis). This is done as

follows:
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The algorithm is based on local scores which are inter-

preted as distance measure from a certain state to the best

state. Local score LSc
sj

t of state sj at time t is computed as:

LSc
sj

t = log p(xt|sj) − J
max
i=1

log p(xt|si) (1)

where, J is the number of states in the keyword-HMM.

If ai,j is transition probability of going from state si to

state sj , the recursive search equations can be written as:

NSc
sj

t = max
i

NScsi
t−1L

si
t−1 + log ai,j + LSc

sj

t

1 + Lsi
t−1

(2)

where, Lsi
t and NScsi

t denote the length of a path lead-

ing to state si at time t and resulting normalized score, re-

spectively. If the best predecessor state to state sj in above

equation is denoted as sbest, then L
sj

t = Lsbest
t−1 + 1.

At any time, a new path may start with Ls1
t = 1 and

NScs1
t = LScs1

t .

The normalized score at the last state of the HMM NScsJ
t

(J being number of states) is then compared against a thresh-

old to make decision about existence of the keyword. A way

to compute word-specific threshold was also proposed in [6].

3. DURATIONAL ENTROPY

Let us consider a Viterbi path spanning observation sequence

of length L, such that each state (sj , j = 1...N ) of the HMM

occupies Lj observations and L =
∑J

j=1 Lj . The durational

entropy of this path can then be calculated as:

dE =

∑J
j=1

Lj

L log Lj

L

log J
(3)

Durational entropy for a word computed as (3) is bounded

between 0 and -1.

The segmentation of observation sequence (which obser-

vation corresponds to which state) is generally derived in the

backtracking part of the Viterbi algorithm. If we want to in-

corporate durational entropy in the keyword spotting algo-

rithm, this would mean that we will have to derive backtrack-

ing at every time t, and therefore will also require backtrack-

ing pointers which are missing in above-mentioned algorithm.

In the following, we propose a mechanism by which du-

rational entropy can be computed for every Viterbi path in a

recursive manner exactly like the computation of accumulated

normalized scores NSc
sj

t .

Let us denote the durational entropy of the path leading to

state sj at time t as E
sj

t . Also, let Nj denote the number of

times state sj has been visited in this path. In a strict left-to-

right topology without skips, this can be computed recursively

as:

If sbest, as given by Eq. 2 is same as sj : Nsj = Nsj + 1,

and

E
sj

t = E
sj

t−1− (Nsj
−1.0)log(Nsj

−1.0)+Nsj
logNsj

(4)

Otherwise: Nsj = 1, and E
sj

t = Esbest
t−1 .

The durational entropy of the word at time t is then com-

puted as:

dEt =

E
sJ
t

L
sJ
t

− log LsJ
t

log J
(5)

Durational entropy provides a simple measure of how dif-

ferent states are occupied across the length (LsJ
t ) of a word.

In the proposed approach, normalized score NScsJ
t as well

as durational entropy dEt (as given by Eq.5) are tracked and

compared against respective thresholds. What we claim by

doing so is that although it is important to consider log like-

lihoods (as done in most speech recognition and related tech-

nologies), it is also important at the same time to analyze how

well each state of the word has contributed to this likelihood

score. A similar study based on durational modeling was pre-

sented in [7]. Essentially, we would like to avoid a situation

in which a set of specific states find a very good match to

acoustic data and produce very high likelihood scores.

Figure 1 presents a picture of how normalized score NScsJ
t

(Eq. 2), length of the word LsJ
t (Eq. ??) and durational en-

tropy dEt (Eq. 5) evolve over time. There are two correct in-

stances of the keyword ”country” and two false alarms marked

by ’C’ and ’F’ in this figure. The two false alarm situations

shown in the figure correspond to words currency and story.

A sharp decline in the length-pane of the figure marks time

instants when a new path is revealed at the last state, as dis-

cussed in Section 2. The horizontal dashed lines in first and

last panes show potential thresholds that can be used to make

keyword decisions.

The figure shows that it is difficult to avoid the two false

alarms by using only log-likelihood statistics even by using

best threshold. These two false alarm situations can be avoided

by considering durational entropy in combination with log-

likelihood statistics. The dashed line in the durational entropy

pane shows a potential threshold value which would reject

these two false alarms. Moreover, this threshold does not have

to be tuned for each individual keyword. All the experiments

reported in this paper are done using same value of entropy

threshold across keywords.

4. EXPERIMENTS AND EVALUATION

The keyword spotting algorithm mentioned in Sections 2 and 3

was tested on one hour of American broadcast news data. The

speech data in these sets is sampled at 16KHz. There are over

50 different speakers, both male and female, present in the

data-sets.

Mel Frequency Cepstral Coefficients (MFCC) [8] were

extracted from the speech signal. This together with first and
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Fig. 1. Evolution of normalized log-likelihood score

(NScsJ
t ), length of the keyword “country” (LsJ

t ) and dura-

tional entropy dEt over time t. There are two correct detec-

tions (marked by ’C’ in the middle pane) and two false alarms

(marked by ’F’). The horizontal dashed lines in first and third

panes show potential score and entropy thresholds that can be

used to make keyword detection decisions. A sharp decline

in length-pane shows a new Viterbi path.

second order delta coefficients resulted in a 42 dimensional

feature vector every 10ms.

Acoustic models used for these experiments were trained

using Janus toolkit [9]. These acoustic models correspond to

context dependent phonemes subword units.

A total of 15 keywords were picked based on their number

of occurrences and significance. These keywords are medical,
airlines, investigation, government, country, president, amer-
ican, palestinians, consumer, business, united, white house,

campaign, information and mediation. A total of 138 occur-

rences of these keywords are present in the data.

4.1. Thresholding

As mentioned above, normalized score NScsJ
t and durational

entropy dEt (Eq. 5) are tracked and compared against their

respective thresholds at every time instant. In the following,

we discuss how these thresholds can be derived.

In an ideal situation, in which every state turns out to be

best (Eq.1) in its respective position in the Viterbi path, the

normalized score at the last state of the word NScsJ
t would

simply be a summation of logarithms of transition probabili-

ties and can be deterministically computed.

In practice, log-likelihoods of other subword unit states

would be competing against and many times may turn out to
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Fig. 2. Distributions of durational entropies for correct and

false alarm errors for the keyword spotting task.

be better than the ideal state 1. These situations will penalize

the likelihood score. A threshold, thus, should be based on

degree of this penalty for each keyword.

Probability of competition and confusion across states of

a word (which finally results in penalization) should grow

with the number of states (J) comprising keyword-HMM, and

length of the word. Since the likelihood score is already nor-

malized by length of the word (Eq. 2), the likelihood threshold

was simply chosen to be proportional to the number of states

in this work. Thus, Tscore = Ttrans + K · J , where Ttrans is

the deterministic term based on transition probabilities.

Although the derivation of the threshold for duration en-

tropy Tentropy is heuristic, the fact that it is naturally nor-

malized between 0 and -1 and that it does not depend on

number of states or length of the word, makes it relatively

easy and intuitive. An optimum threshold, however, depends

on the choice of subword units (monophones, syllables, etc.)

and associated acoustic model topology. An analysis of dura-

tional entropies for correct detections (Figure 2) can provide

a threshold for durational entropy where a lot of false alarms

can be avoided at the cost of minimal degradation in keyword

detection accuracy.

Figure 2 presents distributions of durational entropies of

correctly detected and false alarm errors corresponding to the

current task of keyword spotting. These distributions corre-

spond to nearly 110 correctly detected instances and 140 false

alarm errors. Again, this figure shows that durational entropy

for correctly detected instances is much lower compared to

those of false alarm errors.

1ideal state refers to the state which will be part of the best Viterbi path

through the length of the word
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Fig. 3. DET curves for baseline (dashed, without entropy)

and proposed (solid, with entropy) configurations. Both the

curves are obtained by changing the value of threshold for

normalized score Tscore, while using a constant value of

Tentropy for proposed configuration.

4.2. Evaluation

Figure 3 shows the decision error tradeoff (DET) curves for

both baseline (solid curve) and proposed configurations (dashed

curves). In the baseline configuration, a keyword is detected

when NScsJ
t > Tscore. In the proposed configuration, a key-

word is detected when NScsJ
t > Tscore as well as dEt <

Tentropy . Each curve in this figure is obtained by varying

the value of K, while keeping the value of Tentropy constant

across keywords and across different values of K. Perfor-

mance with 3 different values of Tentropy is shown in this

figure 3.

The figure shows the efficiency of the proposed approach

of using durational entropy constraints in combination with

log-likelihood statistics. Durational entropy constraints in-

deed are very effective at avoiding false alarms. For example,

at K = .025, using Tentropy = −0.94 avoided 64 false alarm

instances at the cost of missing 3 correct detections. At the

same value of K, Tentropy = −0.95( − 0 .93 ) avoided 88

(48) false alarms, at the cost of missing 8 (3) correct detec-

tions.

It should be noted that the basic keyword spotting algo-

rithm (modified Viterbi algorithm, Section 2) is still driven by

log-likelihood scores. Thus, an upper limit on the keyword

detection accuracy would still be decided by effectiveness of

the underlying acoustic models. The durational entropy only

provides a framework to analyze relative behavior of different

states in building a keyword hypothesis and thus helps avoid

false alarm errors.

5. CONCLUSIONS

This paper used the concept of durational entropy in a key-

word spotting framework to avoid false alarm errors. Dura-

tional entropy was defined as entropy of the distribution of

state occupancies in a Viterbi path. A method to recursively

compute durational entropy in time synchronous Viterbi de-

coding was also presented in this paper. It was established that

durational entropies for correct instances are generally lower

than those of false alarms. Experimental results on one hour

of broadcast news data showed that durational entropy can

help avoid a large number of false alarms at a cost of minimal

degradation in detection accuracy.
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