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ABSTRACT

We present an algorithm that enables privacy-preserving speech recog-
nition transactions between multiple parties. We assume two com-
monplace scenarios. One being the case where one of two parties
has private speech data to be transcribed and the other party has pri-
vate models for speech recognition. And the other being that of one
party having a speech model to be trained using private data of mul-
tiple other parties. In both of the above cases data privacy is desired
from both the data and the model owners. In this paper we will
show how such collaborations can be performed while ensuring no
private data leaks using secure multiparty computations. In neither
case will any party obtain information on other parties data. The pro-
tocols described herein can be used to construct rudimentary speech
recognition systems and can be easily extended for arbitrary audio
and speech processing.

Index Terms— Cryptography, Data Security, Speech Recogni-
tion

1. INTRODUCTION

Today’s networked world presents a variety of service models in
terms of client-server services. Speech recognition could surely be
a part of this, however privacy concerns have impeded the devel-
opment of this model. Individuals, and more so corporations and
governments, are understandably reluctant to share private speech
data with other parties providing speech recognition services. In this
paper, we address this issue and provide a framework which can al-
low this cooperation by guaranteeing data privacy for both data and
speech recognition model providers.

To be more speci c, we will present a formulation for securely
training and evaluating Hidden Markov Models (HMMs) between
multiple parties. We formulate it in such a way so that the owners of
the data will not have to share the data, the owner of the HMM will
not have to share the HMM parameters and at the end of the transac-
tion, the owner of the HMM will not know what the nal computa-
tion result is. These results will only be revealed to the providers of
the speech data.

We will show how this type of secure multiparty computation
can be achieved using two scenarios. One scenario will involve an
HMM party training from private data of multiple other parties, the
other scenario will deal with the case where already trained HMMs
will be applied on private data from other parties. The utility of these
scenarios is easy to see in collaborative speech recognition projects.
In the rst case we can enable the consolidation of private speech
databases to train large speech recognition models while ensuring
data privacy. In the other case we can enable speech recognition as
a service model to off-site customers who need to maintain privacy
of their speech data and their transcriptions from both the service
provider and malicious network intruders.

Although these seem like impossible constraints to deal with,
they can be achieved using protocols for secure multiparty compu-
tations (SMC). Such protocols have been around since the early 80s
[8] and provide the tools by which to perform arbitrary computations
between multiple parties concerned with data privacy. Recently this
concept has been employed for simple machine learning tasks such
as k-means and rudimentary computer vision applications [7, 2]; in
this paper we present a SMC formulation of training and evaluating
HMMs as applied on speech data.

2. PRELIMINARIES

2.1. Secure Two-party Computations

The speech-recognition example that we will present is a speci c ex-
ample of a secure two-party computation. Consider the case where
Alice and Bob have private data a and b respectively and they want
to compute the result of a function f(a,b). Consider a trusted third-
party who can take the private data, compute the result c = f(a,b),
and intimate the result to the parties. Any protocol that implements
an algorithm to calculate f(a,b) is said to be secure only if it leaks
no more information about a and b than what one can gain from
learning the result c from the trusted third-party. We assume a semi-
honest model for the parties where they follow the protocol but could
be saving messages and intermediate results to learn more about
other’s private data. 1

To implement an algorithm securely, we will have to implement
each step of the algorithm securely and make sure the intermediate
results of these steps are also secure. If one of the steps is insecurely
implemented, either party could utilize the information to work their
way backwards to gain knowledge about the other’s private data.
Also, if the results of intermediate steps are available, there is a pos-
sibility that one could also get back to the original private inputs. To
prevent this:

• we express every step of the algorithm in terms of a handful
of basic operations (henceforth called as primitives) for which
secure implementations are already known, and

• we distribute intermediate results randomly between the two
parties such that neither party has access to the entire result.
For example, instead of obtaining the result z of a certain
step, the parties receive random additive shares z1 and z2
(z1 + z2 = z). See gure 1 for a schematic illustration.

We now present primitives that will be used in the rest of the
paper. Based on how they are implemented, one can achieve differ-
ent levels of security and computational/communication ef ciency.

1In a malicious model, no assumptions are made about the parties’ behav-
ior. Enforcing security is harder in such a case but can be done by accom-
panying the protocols with zero-knowledge proofs that protocols are being
followed. A detailed discussion is out of scope of this paper.
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Fig. 1. Implementing an algorithm securely. The algorithm takes in
private inputs a and b. Algorithm is split into steps that can be im-
plemented as secure primitives (shown as grey boxes). Intermediate
results are distributed as random additive shares and feed into the
following steps. Final result c is obtained by both parties.

In general, there is a trade-off between security and ef ciency. In
the following subsections, let x = [x1 . . . xd] and y = [y1 . . . yd]
denote d-dimensional vectors owned by Alice and Bob respectively.

Secure Inner Products (SIP ): Given x and y, the secure inner
product protocol produces scalars a and b such that a+b = xTy. We
shall denote this computation by SIP (x,y). We use cryptographic
[3, 4] protocols for this primitive.

Secure Maximum Index (SMAX): Given x and y, Alice
would like to know the index of the maximum element in the vector
sum x+ y. Neither party should get to know the actual value of the
maximum. We denote this computation as j = SMAX(x,y).

For this primitive, we use the permute protocol proposed by [1].
Given x and y and a permutation π chosen by Alice (Bob should not
learn π), the protocol enables Alice and Bob to obtain additive shares
of the permuted sum. In other words, they obtain vectors q and s

such that q+ s = π(x+ y). Alice chooses a random number r and
sends q−r to Bob. Bob sends the index of the maximum element in
q+s−r to Alice who then computes the real index using the inverse
of the permutation π. Neither party learns the value of the maximum
element and Bob does not learn the index of the maximum element.

Secure Maximum Value (SV AL): Given x and y, the secure
maximum value protocol produces a and b such that their sum is
equal to the maximum element in x + y. Let us denote this as a +
b = SMAX(x,y). For this primitive, we use the minimum nding
protocol presented in [1].

Secure Logsum (SLOG): This primitive unlike the others above,
is introduced here only because it simpli es the presentation of pro-
tocols later. It is not a cryptographic primitive. Given x and y such
that x + y = ln z = [ln z1 . . . ln zd], the protocol produces two
scalars q and s such that q + s = ln(

Pd

i=1
zi). Let us denote this

by q + s = SLOG(x,y).
One can obtain q + s as the logarithm of the inner product of

exponentiated vectors ex and ey as follows: Alice chooses a random
q and computes SIP (ex−q, ey) with Bob. Bob obtains the result φ.
Bob has s = lnφ = −q + ln(

Pd

j=1
exj+yj ) and Alice has q.

Gaussian Mixture Likelihood (GML): In [6], we proposed
protocols for classi cation using gaussian mixture models. One of
the protocols presented can be used to nd the log-likelihood of
data given a gaussian mixture model. If Bob has a gaussian mix-
ture model b(x) and Alice has data vector x1, the protocol generates
additive shares of the log-likelihood log b(x1). See [6] for a detailed
description.

2.2. Hidden Markov Models

Hidden Markov Models nd use in a wide range of applications, and
have successfully been used in speech recognition. There are there
fundamental problems for HMM design, namely: the evaluation of
the probability of (likelihood) of a sequence of observations given a
speci c HMM; the determination of a best sequence of model states;
and the adjustment of model parameters so as to best account for the
observed signal. The rst problem is one of scoring how well a given
model matches a given observation sequence. The second problem
is one in which attempt to uncover the hidden part of the model. The
third problem is the problem of training. Algorithms for the above
three problems are well known and described in detail in [5].

2.3. Problem Formulation

Suppose Bob has a trained HMM with all the model parameters
learned. Let the HMM be characterized as follows:

• N states {S1, . . . , SN}. Let the state at time t be qt.

• The state transition probability distributionA = {aij}where

aij = P [qt+1 = Sj |qt = Si], 1 ≤ i, j ≤ N. (1)

• The observation symbol probability distribution in state j given
by a mixture of Gaussians

bj(x) =

MX
m=1

cjmN (μjm,Σjm), 1 ≤ j ≤ N, (2)

where x is the variable, cjm is the mixture coef cient for the
m-th mixture in state j, andN (μjm,Σjm) is a gaussian with
mean vector μjm and covariance matrix Σjm.

• The initial state distribution π = {πi} where

πi = P [q1 = Si] 1 ≤ i ≤ N. (3)

We use λ to denote the entire parameter set of the model.
Let Alice have an observation sequence X = x1x2 . . .xT . We

will show how Alice can securely compute P (X|λ), the probabil-
ity of the observation sequence given the model, using the forward-
backward procedure. Once there is a secure way of computing like-
lihoods, it is easy to see how it can be extended to applications like
speech recognition. Suppose Bob has trained several HMMs which
characterize various speech sounds. Each HMM will correspond to
a speech recognition unit. Let Alice’s observation vector correspond
to a small snippet of speech sound (we assume that Alice knows
the features that Bob has used to train his HMMs on and has repre-
sented her sound sample in terms of those features - otherwise these
features can be computed securely as well). Alice and Bob can ob-
tain additive shares of the likelihood of Alice’s observation sequence
for every speech recognition unit of Bob. They can then engage in
the SMAX protocol and nd out the unit that corresponds to Al-
ice’s sound snippet. We will also show how one can securely learn
the best sequence of model states using the viterbi algorithm. And
nally, we will show how one can train HMM parameters using data

from a private database.

3. SECURE FRAMEWORK

Consider the computation of a function

z = f(x1y1, x2y2, . . . , xnyn) = Φ
1≤i≤N

xiyi (4)
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where Φ is a generic operator. For every i, let Alice and Bob have ad-
ditive shares of log xi and log yi. They can receive additive shares
of z by using SLOG, SV AL or SMAX when the operator is a
summing operator Σ, a maximum operator max, or a maximum in-
dex operator argmax respectively. With the above basic operations,
one can implement protocols for all problems of HMM.

3.1. The Forward-Backward Procedure

Consider the forward variable αt(i) de ned as

αt(i) = P (x1x2 . . .xt, qt = Si|λ) (5)

We can solve for αt(i) inductively and calculate P (X|λ) as follows:

1. Initialization:

α1(i) = πibi(x1), 1 ≤ i ≤ N

Input: Bob has the mixture distribution that de nes bi(x)
and the initial state distribution π = {πi}; Alice has x1.
Output: Alice and Bob obtain vectors Q and R such that
Qi + Ri = lnα1(i).

(a) Alice and Bob perform GML on their data to obtain
vectors U and V. Notice that Ui + Vi = ln bi(x1).

(b) Alice forms the vector Q = U. Bob forms vector R,
where for each i, Ri = Vi + lnπi. Thus, Qi + Ri =
ln bi(x1) + lnπi = lnα1(i).

2. Induction:

αt+1(j) =
“ NX

i=1

αt(i)aij
”
bj(xt+1)

where 1 ≤ t ≤ T − 1, 1 ≤ j ≤ N

Input: Alice and Bob have vectors Q and R such that Qi +
Ri = lnαt(i). Alice and Bob have Uj and Vj such that Uj +
Vj = ln bj(xt+1). Bob has the vector aj = [a1j , a2j , . . . , aNj ].
Output: Alice and Bob obtain Q̄ and R̄ such that Q̄ + R̄ =
lnαt+1(j).

(a) Alice and Bob engage in the secure logsum protocol
with vectors Q and (R+ ln aj) to obtain y′ and z′ i.e.
y′ + z′ = SLOG(Q,R+ ln aj).

(b) Alice obtains Q̄ = y′ + Uj , Bob obtains R̄ = z′ + Vj .

3. Termination:

P (X|λ) =

NX
i=1

αT (i).

Input: Alice and Bob have vectors Q and R such that Qi +
Ri = lnαT (i).
Output: Alice and Bob obtain y and z such that y + z =
lnP (X|λ).

(a) Alice and Bob engage in the SLOG protocol with vec-
torsQ andR to obtain y and z i.e. y+z = SLOG(Q,R).

Ef ciency: In the initialization step, there are (d+2)MN+N SIP
calls and N SMAX/SV AL calls involving d-dimensional vectors.
In the induction step, for every j and for every t, there is one SIP
call with an N -vector. In the termination step, there is one SIP call
with an N -vector.
Security: Bob does not learn any xk and Alice does not learn any of
Bob’s parameters.

We can obtain a similar procedure for a backward variable βt(i):

βt(i) = P (xt+1xt+2 . . .xT |qt = Si, λ) (6)

We initialize βT (i) = 1,∀1 ≤ i ≤ N and solve for βt(i) as:

βt(i) =
NX
j=1

aijbj(xt+1)βt+1(j),

where t = T − 1, T − 2, . . . , 1, 1 ≤ j ≤ N

Notice that the above equation is a sum of products. Alice and Bob
have additive shares of the logarithm of each product term. They can
compute additive shares of the nal result using SLOG.

3.2. Viterbi Algorithm

Consider the quantity

δt(i) = max
q1,q2...qt−1

P [q1q2 . . . qt = Si,x1x2 . . .xt|λ] (7)

δt(i) is the best score along a single path, at time t, which accounts
for the rst t observations and ends in state Si.

1. Initialization:

δ1(i) = πibi(x1), ψ1(i) = 0 1 ≤ i ≤ N

The procedure is evaluating δ1(i) is analogous to the initial-
ization step of the forward backward procedure.

2. Recursion:

δt(j) =
“

max
1≤i≤N

[δt−1(i)aij ]
”
bj(xt)

ψt(j) = argmax
1≤i≤N [δt−1(i)aij ]

where 2 ≤ t ≤ T, 1 ≤ j ≤ N

For δt(j), Alice and Bob use SV AL and obtain additive
shares of the log of the maximum. They’ll already have ad-
ditive shares of log bj(xt) and hence they’ll have additive
shares of log δt(j). Similarly, they can obtain ψt(j) by us-
ing SMAX.

3. Termination and Path backtracking:

P ∗ = max
1≤i≤N

[δT (i)] q∗
T = argmax

1≤i≤NδT (i).

q∗
t = ψt+1(q

∗
t+1) t = T − 1, T − 2, . . . , 1.

Alice and Bob will have additive shares of log δT (i) from the
previous step. They can use SV AL and SMAX to obtain
P ∗ and q∗

T . Alice, who has access to qt and ψt, can evaluate
the path sequence.

Security and ef ciency considerations for this protocol are similar to
what was discussed with regard to the forward-backward procedure.

3.3. HMM training

Formulae for re-estimation of HMM parameters are given below.

γt(j, k) =

 
αt(j)βt(j)

P (X|λ)

! 
cjkN (xt,μjk,Σjk)

bj(xt)

!

ξt(i, j) =
αt(i)aijbj(xt+1)βt+1(j)

P (X|λ)
, aij =

PT−1

t=1
ξt(i, j)PT−1

t=1
γt(i)

cjk =

PT

t=1
γt(j, k)PT

t=1

PM

k=1
γt(j, k)

, μjk =

PT

t=1
γt(j, k)xtPT

t=1
γt(j, k)

πi = γ1(i), Σjk =

PT

t=1
γt(j, k)(xt − μjk)(xt − μjk)

′PT

t=1
γt(j, k)
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Notice that all the above formulae are made of products or sums
of products. It is easy to show that Alice and Bob, using SIP and
SLOG protocols, can compute γt(j, k), ξt(i, j), πi, aij and cjk.
We do not show the details due to lack of space.

Now consider the estimation of the mean and covariance of the
gaussian mixture components. The requirements are that Alice should
not have access to the learned parameters and Bob should not have
access to the data in any iteration. In addition, we have to be care-
ful that Bob does not learn the parameters at every iteration. This
is required because one can deduce information about the data by
knowing the results of repeated operations with the data vector. For
example, knowledge of d inner products with a d dimensional vector
x is enough to learn x. To enforce this, we let Alice and Bob have
additive shares of the mean at every iteration. Only after all the iter-
ations are complete does Bob receive values of the mean.

Input: Alice has xt, t = 1, . . . , T . Alice and Bob have T -vectors
E and F such that Et + Ft = ln γt(j, k).
Output: Alice obtains μjkA ; Bob obtains μjkB and Σjk. (μjkA +
μjkB = μjk).

1. Alice and Bob obtain e and f where e+ f = SLOG(E,F).

2. For i = 1, 2, . . . , d:
Lethi be the T -vector formed by i-th elements of x1, . . . , xT .
Alice and Bob obtain e′ and f ′ where e′ +f ′ = SLOG(E+
lnhi,F).

• Notice that (e′ − e) + (f ′ − f) = lnμijk.

Alice and Bob obtain the i-th elements of μjkA and μjkB

respectively as a result of SIP (exp(e′ − e), exp(f ′ − f)).

3. Consider the evaluation of σmn, the mn-th element of the
matrix Σjk. We rst consider evaluating the mn-th element
of (xt − μjk)(xt − μjk)

′. This is equivalent to evaluating
the mn-th term of (x̄t− μ̄jk)(x̄t− μ̄jk)

′, where x̄t = (xt−
μjkA ) and μ̄jk = μjkB . Let the i-th elements of x̄t and μ̄jk

be x̄it and μ̄ijk respectively. Notice that Alice has access to x̄t
and Bob has access to μ̄jk.

• For t = 1, . . . , T , Alice and Bob engage in SIP pro-
tocol with vector exp(rt)[x̄mt x̄nt ,−x̄mt , x̄nt , 1] and vec-
tor [1, μ̄njk,−μ̄mjk, μ̄

m
jkμ̄

n
jk], where rt is a random scalar

chosen by Alice. Let Bob obtain the result φt.

• Alice forms the T -vector r = [r1, . . . , rT ] and Bob
forms the vector φ = [φ1, . . . , φT ].

Alice and Bob obtain ē and f̄ where ē + f̄ = SLOG((E −
r), (F+ lnφ)).

• Notice that (ē− e) + (f̄ − f) = ln σmn.

Alice sends (ē− e) to Bob so that he can calculate σmn.

At the end of all iterations, Alice sends her shares μjkA to Bob so
that he can calculate μjk. Notice that Bob does learn the covariance
matrix in every iteration but quantities used to calculate the covari-
ance matrix are additive shares which does not help him in inferring
about Alice’s data. This particular example of HMM training using
only two parties was used for derivation purposes. This procedure
can be easily generalized to the case where Bob learns parameters
using data from multiple parties instead of one, in which case the
learned statistics are averaged and provide an additional layer of se-
curity for the data providers.

4. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a secure multiparty computation for-
mulation of hidden Markov models. We have shown how we can em-
ploy simpler SMC primitives to perform training and evaluation of
HMMs for security sensitive speech applications. The implementa-
tion that we have presented is based on the concept of additive shares
to enforce data privacy. Although this is a viable implementation it
is only one of many possible ways such a secure system can be im-
plemented. Future advances in the eld of cryptography, which will
hopefully provide more robust and ef cient protocols, can be readily
employed in our framework by straightforward replacement of the
basic primitives. A wise choice of underlying primitives will have
to balance tradeoffs such as computational ef ciency and network
bandwidth as opposed to security/privacy and is a research project
in its own right. Because of the breadth of options and the lim-
ited space in this paper we defer a performance evaluation discus-
sion to a future publication. At the moment, and depending on the
primitives used, performance can range from a few times the com-
putational/network overhead of a straightforward implementation, to
many orders of magnitude. The emergence of specialized hardware
that perform cryptographical operations is also a factor that can dras-
tically reduce computational complexity.

In this paper we only presented a formulation to perform HMM
computations which are central for speech applications. It is straight-
forward however to employ this methodology to construct various
secure applications using arbitrary signal processing operations. It is
our hope that such privacy conserving methodologies can help fos-
ter computational collaborations for either research or commercial
purposes while ensuring the data privacy of all participants.
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