
AN APPROACH TO LOW FOOTPRINT PRONUNCIATION MODELS FOR EMBEDDED
SPEAKER INDEPENDENT NAME RECOGNITION

Kaisheng Yao and Lorin Netsch

Speech Technologies Laboratory, Texas Instruments Incorporated
12500 TI Blvd, MS 8649, Dallas, TX 75243

{kyao, netsch}@ti.com

ABSTRACT

Pronunciation modeling is an important component of speaker in-
dependent name recognition on embedded devices. Decision trees
have been widely used to generate pronunciations of names due to
improved accuracy. However, pronunciation modeling using de-
cision trees may suffer from two main draw backs. The rst is
large memory footprint. The second is that decision trees usually
generate a single pronunciation which does not re ect the real-
world multiple pronunciations of a name. We present an approach
to address these draw backs. The approach consists of a letter-to-
phoneme mapping method that prunes many irregular pronunci-
ations in order to train compact decision trees, and a multi-stage
pronunciation transformation method that generates multiple pro-
nunciations from the output of the trained decision trees. The ap-
proach effectively reduces footprint by more than 58% and achieves
more than 23% of word error rate reduction, compared to a base-
line.

Index Terms— Speech recognition, pronunciation model, de-
cision tree, probabilistic re-write rule

1. INTRODUCTION

An important application of automatic speech recognition (ASR)
on embedded devices is speaker independent name recognition. It
is characteristic for the application that the user does not have to
train a name tag for each name. Furthermore, vocabularies of the
names are subject to change by the user. Therefore, the phoneme
sequences of the names need to be generated on-line. A pronunci-
ation model that performs this function is thus a critical component
of the name recognition system.

In developing a pronunciation model, several approaches have
been proposed. One approach applies a set of rules to map the
orthographic form of words to pronunciations. The rules usually
have very low footprint and hence are used in some early name
recognition systems [1]. However, the rules may not be suf cient
to model irregular languages, such as English, accurately enough.
More recently, decision trees (DTs) [2] have been applied for mod-
eling pronunciations of irregular languages [3]. The DT-based ap-
proach is usually more accurate and provides better recognition
accuracy than the rules. However, simple application of DTs may
have large memory footprint, which is not feasible for embedded
ASR. Another drawback of the DTs is that they usually produce
a single pronunciation of each word, which inevitably introduces
mismatch to real-world multiple pronunciations of names.

This paper describes an approach developed in our lab to im-
prove DT-based pronunciation models. Since the available mem-
ory is limited on embedded devices, a method is developed to reg-
ularize a pronunciation dictionary to achieve a low footprint. In
addition, performance of the DTs may be improved by using a
set of data-driven rules [4] to augment pronunciations from the
DTs. Notice that these rules usually require little memory. Hence
performance can be improved without much increase of memory
footprint. Experimental results show that our approach can signif-
icantly reduce memory footprint and improve recognition perfor-
mance, in comparison to a baseline system.

2. THE PRONUNCIATION MODELING APPROACH

2.1. Pronunciation modeling using decision trees

Our embedded name recognition system consists of three major
units: pronunciation models, acoustic models, and a recognition
engine. For the name recognition task, names are initially pre-
sented in written form. Phonetic transcriptions are generated by
the pronunciation model. The recognition engine carries out the
recognition process with the phonetic transcription and the acous-
tic model.

It is critical to have accurate phonetic transcriptions in order
to achieve high performance name recognition. Decision trees
have shown the highest accuracy for letter-to-phoneme (LTP) map-
ping [5], and hence are widely used [3]. Using decision trees, pro-
nunciation of each letter in the alphabet of a language is modeled
separately. Pronunciation of a name is obtained by concatenation
of pronunciations of letters in the name.

However, for irregular languages such as English, simple ap-
plication of DTs may result in large memory footprint to encode
the LTPmapping. An example is shown below. For instance, a rea-
sonable one-to-one LTP mapping between word TROPHIES and
its pronunciation t r ow f iy z may be

T R O P H I E S
t r ow f _ iy _ z

This word is not unusual for English in having fewer phonemes
than letters. The null-phone needs to be inserted in the transcrip-
tion if a one-to-one mapping is to be maintained. Yet it is not clear
where the null-phone should be placed, since the following may
also be a reasonable mapping:

T R O P H I E S
t r ow f _ _ iy z

IV 9651424407281/07/$20.00 ©2007 IEEE ICASSP 2007

1 5 9

13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77

S1

S10

S19

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P(p|l)

phoneme

letter

Fig. 1. Estimated posterior probability of phoneme given letter.

2.2. The proposed LTP method

Based on the above observation, a method of regularizing LTP
mappings is proposed. The concept of regularization in this pa-
per is to remove those LTP mappings with low probabilities using
a pruning process. The LTP mappings after the regularization are
those with suf cient probabilities and are used to train decision
trees, generating compact and low footprint pronunciation mod-
els.

De ne p and l as phoneme and letter, respectively, in a pronun-
ciation dictionary. The above mentioned probability is the a pos-
teriori probability of phoneme p given letter l, i.e., P (p|l). Natu-
rally, this is obtained via the Bayes formulaP (p|l) = P (l|p)P �(p|l)

P (l)
.

In the Bayes formula, the probability of observing letter l given
phoneme p, P (l|p), is measured as the frequency of occurring let-
ter l given phoneme p. Clearly, alignments of letter-to-phoneme
pairs have to be obtained to count the co-occurrence count of phoneme
p and letter l and the count of phoneme p, from which the fre-
quency can be calculated. The prior probability P �(p|l) is usu-
ally initialized with human knowledge. The probability of letter l,
P (l), is a normalization factor in the Bayes formula.

For example, setting an initial small value of the prior prob-
ability of phoneme iy given letter E, P �(iy|E), may result in
low posterior probability P (iy|E). However, if a large value of
P (E|iy) is observed on the aligned letter-to-phoneme pairs, the
posterior probability P (iy|E) may become higher.

This example shows the necessity of an iterative process to
update the a posteriori probabilities. In this paper, an E-M type
algorithm is applied. In the E-step, the a posteriori probability is
obtained via the above mentioned Bayes formula. In the M-step,
the updated posterior probability is used together with the letter
probability P (l) to obtain the best LTP mapping.

The above E-M algorithm is iteratively conducted. At con-
vergence, some a posteriori probabilities become zero. Strong
peaks occur for strong co-occurrences of certain phonemes and
letters. An example of the converged posterior probability P (p|l)
is shown in Fig. 1, which has strong co-occurrence of phoneme ax
and letter A 1.

We use entropy to measure irregularity of LTP mapping. Aver-
aging over all letter-to-phoneme pairs in an English pronunciation
dictionary, we obtained the averaged entropy at initialization as

1We use numeric indices in Fig. 1.

DTPM

stg1 stg2 stgNstg0

Fig. 2. The diagram of the multi-stage pronunciation adaptation
method of generating multiple pronunciations.

0.78. After 5 iterations, the averaged entropy decreased to 0.57.
This quantitative result showed that the LTP method was able to
regularize LTP mappings.

Whereas some related methods [6] may terminate after the
above process, the proposed method further applies a pruning pro-
cess on the posterior probabilities. A threshold θLTP is selected to
prune those phoneme and letter co-occurrences that have low pos-
terior probabilities. For example, posterior probability of phoneme
w ah given letter A is lower than the threshold and therefore the
co-occurrence of A and w ah is removed. After the pruning pro-
cess, another EM iteration is run to align letter-to-phoneme pairs,
providing training cases for decision trees [2].

2.3. Amulti-stagemethod to generate multiple pronunciations

Decision trees trained with the above aligned pronunciation dictio-
nary usually output a single pronunciation for a name. However,
high performance name recognition requires a system to deal with
multiple pronunciations. Hence, a single pronunciation of decision
trees has to be augmented with its pronunciation variations.

In this section, we present a method to generate multiple pro-
nunciations through stages of transformations. A diagram of the
proposed method is shown in Fig. 2. Single pronunciations from
the trained decision trees, denoted as DTPM in Fig. 2, are trans-
formed at the rst stage. The transformation, denoted as

�
, ap-

plies a set of probabilistic re-write rules [4] at this stage. After
the transformation, the outputs of this stage consist of the origi-
nal input pronunciations and their variations due to the rules. The
outputs are then used as inputs to the next stage, and the above
process is applied again.

The rules in each stage, denoted as � in the gure, are ob-
tained of ine. In order to obtain the rules, the patterns of pronun-
ciation variation have to be determined after analyzing the align-
ment between two sets of pronunciation dictionaries. The rst dic-
tionary, reference dictionary, consists of true pronunciations, and
the second consists of pronunciations generated from the previous
stage. With the selected input pronunciation, a pattern of pronunci-
ation variation from the reference pronunciation is extracted. The
pattern includes the preceding and following phoneme context of
the pronunciation variation. The word boundary, denoted as $ is
also considered as a context. The phoneme to be transited is de-
noted as in a context.

For each pronunciation variation, the patterns are organized
into a tree structure. Each node represents a context. The context-
dependent phoneme transition probability P (p → p′|c) is calcu-
lated similarly as that in Sec. 2.2 using the co-occurrence counts of
phoneme p and its variant p′ given a context c. An example of the
tree is shown in Fig. 3. In the gure, phoneme ahmay have a pro-

IV 966

_

d;_

d;_;m

$;_ s;_

b;_;n s;_;n

n;s;_;n

n;s;_;n;$

t;s;_;n

ah->ax

Fig. 3. Tree-structured rewrite rules for phoneme variation pattern
ah to ax. denotes the phoneme to be transited, which is ah in
this gure. The top node is context-free. The deepest node has the
longest context.

nunciation variation ax if, e.g., the left phoneme of phoneme ah
is d. More detailed analysis shows that the pronunciation variation
occurs when the right phoneme is also m.

These contexts are grouped into several rule sets with different
lengths of left and right contexts. Denote a rule set with left and
right context lengths as Rij . For example, the contexts n;s; ;n
and t;s; ;n in Fig. 3 are grouped into rule set R21.

Reliable rule sets are kept using a pruning process [7]. After
pruning, the context selected to transit a phoneme to its variant
may not be very detailed as those in the bottom of the tree, e.g.,
R22, nor too general as those in the root of the tree, i.e.,R00 which
is context free. For example, the contexts selected for transition
of ah to ax shown in Fig. 3 are in rule set R10, which includes
contexts such as d; , $; , and s; .

Pronunciation variations in each stage are generated by apply-
ing the pruned rule set. When a context c is located for a phoneme
p, its variant p′ is generated with probability for wordW , i.e.,

P (p′|W)← P (p|W)P (p→ p′|c).

This probability P (p′|W) has to be larger than a threshold to tran-
sit phoneme p to p′ for word W . We also keep the original pro-
nunciations in the output of each stage.

3. EXPERIMENTAL RESULTS

3.1. Experiment setup

The Wall Street Journal (WSJ) database was used to train acous-
tic models. The CALLHOMEAmerican English Lexicon (PRON-
LEX) [8] is used to train the DT-based pronunciation model. Since
our task is name recognition, which may not have letters such as .
and ’, we removed those entries from the dictionary. We also aug-
mented the dictionary with additional words. The nal dictionary
has 96500 entries with multiple pronunciations.

Our name recognition system was tested on an in-house pro-
prietary database collected using hands-free microphones in three
recording sessions: parked (car parked, engine off), city-driving
(car driven on a stop and go basis), and highway (car driven on
a highway). In each session, 20 speakers (10 male/female) read
120 pairs of English rst and family names. The database was

Table 1. Relative reduction of memory footprint (in %) and
phoneme accuracy (PA in %) of the pronunciation model using
different pruning threshold θLTP and prior probabilities.

P �(p|l) θLTP 0.000 0.001 0.003 0.005
% Reduction 58 59 60 62

PA 83.7 88.5 88.6 88.4
Better % Reduction 60 61 61 61
a priori PA 88.7 88.6 88.7 88.7

sampled at 8kHz, with frame rate of 20ms. From the speech, 10-
dimensional MFCC features, together with their rst-order differ-
entials, were derived. A joint additive and convolutive distortion
compensation (JAC) method [9] was used to enhance performance
in the above three driving conditions.

Performance of the pronunciation model was evaluated on the
database. Phoneme accuracy (PA), which is shown below, is cal-
culated by comparison of the pronunciations generated from the
pronunciation model and the pronunciations in a reference dictio-
nary of the database. The PA is de ned as

Phoneme accuracy =
N −D − S − I

N
,

whereN is the total number of phonemes in the reference pronun-
ciations. D, S and I each denote the number of deletion errors,
substitution errors and insertion errors. The contribution of the
pronunciation model to speech recognition is measured in relative
word error rate (WER) reduction.

3.2. Memory reduction

The memory footprint is computed on the trained DTs. An initial
implementation of DTs uses an LTP mapping that does not have
the method in Sec. 2.2. DTs are then trained with the pronunci-
ation dictionary processed by the LTP method in Sec. 2.2, which
incorporates prior knowledge and uses a set of pruning thresholds
θLTP to regularize the pronunciation dictionary. As shown in Ta-
ble 1, memory footprint is reduced by 58%, in comparison to the
initial DTs.

Further performance improvements may be obtained by in-
corporating better prior knowledge. In particular, we adjusted
P �(p|l) of those unlikely pairs to zero. We observed that foot-
print is reduced by 60% with θLTP = 0.000. However, the con-
tribution of better prior knowledge is diminishing when the prun-
ing threshold θLTP is applied. With θLTP increased from zero
to 0.005, pronunciation models with different prior probabilities
tend to have similar footprint and phoneme accuracies. The re-
sults show that pruning in the LTP method is effective to reduce
irregularity in the aligned dictionary.

3.3. Improved pronunciation using the multi-stage method

3.3.1. Results on phoneme accuracy

The multi-stage method reported in Sec. 2.3 is applied on the out-
put of the DTs. Phoneme accuracy as a function of the stage num-
ber is shown in Fig. 4. The phoneme accuracy is increased after
each processing stage. Notice that the rst stage of the proposed

IV 967

0 1 2 3 4 5 6 7 8 9
86

88

90

92

94

96

98

100

Stage

Ph
on

em
e

ac
cu

ra
cy

 (i
n

%
)

Fig. 4. Phoneme accuracy versus stage index.

Table 2. Number of data-driven rules at each stage of the proposed
method.

Stage 1 2 3 4 5 6 7 8 9
183 135 107 97 92 87 86 85 83

method is able to increase phoneme accuracy by 8%. Improve-
ments of phoneme accuracies are from 0% to 2% in the following
stages. After the 6-th stage, phoneme accuracy is at 100%, mean-
ing that all of the multiple pronunciations of names are included
in the generated pronunciations. We also show the number of the
extracted probabilistic re-write rules at each stage in Table 2. The
number of rules is decreased from 183 to 83.

These results clearly show that each stage extracts rules that
reduce pronunciation variation between the input pronunciations
and their reference pronunciations. Since the number of the ex-
tracted rules at each stage is small, extra memory to save these
rules is small.

3.3.2. Results on name recognition

Relative word error rate reduction is measured against the stage
0, which has single pronunciations of names. Table 3 shows the
reduction as a function of the stage number. We observe that
• With multiple pronunciations generated in the stage 1, WER
is signi cantly reduced by 23%, relative to the stage 0.

• Additional multiple pronunciations in the following stages
contribute to further WER reductions. In the stage 4, WER
is reduced by 32%. However, we notice that the major re-
duction of WERs is achieved in the stage 1.

• We conducted some analysis in each driving condition and
observed more signi cant reduction of WERs in the parked
condition than in the highway condition. Notice that the
major mismatch in the parked condition may be caused by
pronunciation variation, whereas distortions in the highway
condition include much background noise. In the parked
condition, a signi cant 61% of WER reduction is observed.
The results show that the method reduces much mismatch
caused by pronunciation variations between DTs and real
pronunciations of users.

Table 3. Relative word error rate reduction (in %) of name recog-
nition achieved by the proposed method.

stage 0 1 2 3 4
WER reduction 0 23 30 30 32

4. CONCLUSIONS

In this paper, we have presented an approach to improve decision-
tree-based pronunciation model for speaker-independent name recog-
nition. The approach regularizes a pronunciation dictionary to
train compact decision trees. To reduce mismatch of the single
pronunciation output from the decision trees, a multi-stage method
is applied to augment the pronunciation with its variations. On a
hands-free name recognition task performed on an embedded ASR
system, we obtained signi cant performance improvements using
this approach, compared to a baseline system.

5. REFERENCES

[1] C. Ramalingam, L. Netsch, and Y. Kao, “Speaker-independent
name dialing with out-of-vocabulary rejection,” in ICASSP,
1997, pp. 1475–1478.

[2] J. Quinlan, C4.5: programs for machine learning, Morgan
Kaufmann Publishers, 1992.

[3] J. Suontausta and J. Tian, “Low memory decision tree method
for text-to-phoneme mapping,” in ASRU, 2003.

[4] Q. Yang and J.-P. Martens, “Data-driven lexical modeling of
pronunciation variations for ASR,” in ICSLP, 2000.

[5] V. Pagel, K. Lenzo, and A. Black, “Letter to sound rules for
accented lexicon compression,” in ICSLP, 1998, pp. 2015–
2018.

[6] R. Damper, Y. Marchand, J.-D. Marsters, and A. Bazin,
“Aligning letters and phonemes for speech synthesis,” in ISCA
Speech Synthesis Workshop, 2004.

[7] Y. Akita and T. Kawahara, “Generalized statistical modeling
of pronunciation variations using variable-length phone con-
text,” in ICASSP, 2005.

[8] LDC, “CALLHOME American English Lexicon,”
http://www.ldc.upenn.edu/.

[9] Y. Gong, “A method of joint compensation of additive and
convolutive distortions for speaker-independent speech recog-
nition,” IEEE Trans. on Speech and Audio Processing, vol.
13, no. 5, pp. 975–983, 2005.

IV 968

