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ABSTRACT

In large-vocabulary speech recognition systems, the major part of
memory resources is typically consumed by a large n-gram language
model. Representing the language model compactly is important in
recognition systems targeted for small devices with limited mem-
ory resources. This paper extends the compressed language model
structure proposed earlier by Whittaker and Raj. By separating n-
grams that are prefixes to longer n-grams, redundant information can
be omitted. Experiments on English 4-gram models and Finnish 6-
gram models show that extended structure can achieve up to 30 %
lossless memory reductions when compared to baseline structure of
Whittaker and Raj.

Index Terms— Data structures, Speech recognition, Natural
languages, Modeling, Data compression

1. INTRODUCTION

The major part of memory consumption of large-vocabulary contin-
uous speech recognition systems is usually due to the size of sta-
tistical language models. Especially, in general recognition tasks
where the vocabulary or topic can not be restricted, the recognition
accuracy can be improved by obtaining larger text corpora and train-
ing larger language models. While the memory resources are often
not the main concern in research systems, consumer systems have
to take the memory issues into account. Thus representing the lan-
guage models efficiently affects the recognition accuracy directly on
systems with limited memory resources.

Entropy pruning [1] is a widely used method for reducing the
number of language model parameters. Full n-gram statistics can be
reduced considerably before recognition accuracy starts to degrade.
Another approach for reducing the number of parameters is to grow
models incrementally [2]. Goodman and Gao [3] have shown that
combining pruning and clustering can reduce the number of param-
eters further. Whittaker and Raj [4, 5, 6], on the other hand, have pro-
posed several lossless and lossy compression methods for storing the
language model parameters efficiently while maintaining reasonable
access times. Olsen and Oria [7] have compressed 2-gram models
by using codebooks for probability distributions.

This paper presents an extension to compressed data structure of
Whittaker and Raj. The baseline structure and compression methods
are presented in Section 2 and the extended structure in Section 3.
Section 4 presents experiments with discussion.
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Fig. 1. The baseline tree structure.

2. BASELINE STRUCTURE

2.1. Back-off language model

In the rest of the paper, we assume that the language model is rep-
resented in a common back-off format. An back-off m-gram model
M is a tuple (V, G, αM, βM), where

• V is the set of symbols (usually whole words or sub-word
units)

• G = (G1 ∪ · · · ∪Gm) is the set of n-grams stored explicitly
in the model.

• αM : G → R is a table of log-probabilities of the n-grams
stored explicitly in the model,

• βM : G → R is a table of logarithmic back-off weights of
the n-grams stored explicitly in the model.

This corresponds to the widely used back-off structure introduced
by Katz [8]. Given an arbitrary n-gram wn

1 = (w1, . . . , wn), the
conditional log-probability log Pr(wn|w
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2.2. Baseline tree structure

The tree structure used by Whittaker and Raj is illustrated in Fig-
ure 1. The n-grams of different orders are stored in separate tables,
and higher-order tables are accessed through lower-order tables. A
row in n’th table correspond to an n-gram wn

1 = (w1, . . . wn). Each
table contains the following arrays:
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1. The index of the word wn. This array is not required for 1-
grams, if we assume that 1-gram table contains a row for each
word in vocabulary

2. The log-probability αM(wn

1 ).

3. The back-off weight βM(wn

1 ). By the definition of the back-
off model, this field is not required at the highest-order.

4. A boundary index. It indicates where is the last child of the
row in the next table. More specifically, it is first row (in the
next table) after (n + 1)-grams that have wn

1 as prefix, i.e.,
n-grams (w1, . . . , wn, ·). Naturally, the boundary values can
be omitted from the highest-order table.

For example, imagine we want to fetch αM(in, front, of, the) from
the structure shown in Figure 1. We start at the first table, and
move to row r corresponding to word in (the black row in the fig-
ure). Boundary values of rows r and r − 1 indicate the range for
2-grams (in, ·) in the second table. In that range, we search the row
corresponding to word front. Assuming that the rows of the range are
sorted according to the word indices, the desired row can be found
efficiently by binary search. Again we look at the boundary values
and proceed further through the third table to the fourth table. Fi-
nally, the probability field of the row corresponding to the word the
gives αM(in, front, of, the). The main benefit of the above struc-
ture is that branches can be represented very compactly—by a single
value per parent node.

2.3. Compressing the fields

In each array, every row has the same bit-width to allow for constant-
time access to an arbitrary row. For each array, we can choose the
minimum number of bits that can represent all values. For example,
if word indices varied between 0 and 8 428, only 14 bits would be
required for the word index array (log

2
8428 ≈ 13.04).

Probability values and back-off weights are usually represented
as 32-bit floating point values in computer systems. However, 32
bits is more than enough for storing parameters of typical n-gram
language models. Whittaker and Raj showed that the probabilities
and back-off weights can be quantized even down to 8 bits before
the quantization degrades speech recognition results [5].

Whittaker and Raj also described a general method for com-
pressing sorted integer arrays [6], which can be used to compress
boundary values and word indices. In the original paper, the com-
putational overhead of the integer compression was not evaluated,
but the access time should be roughly logarithmic with respect to
length of the array. Without the compression the access time would
naturally be constant. In this paper, the boundary array compression
is used, but the word index compression is omitted in order to keep
the structures and experiments simpler. The effect of the omission is
discussed in more detail in Section 4.2.

3. EXTENDED STRUCTURE

In the baseline structure, the back-off weight and boundary value
arrays can be omitted from the highest order because there are no
higher-order children. However, there are also childless rows on the
lower orders, but we have to store a back-off weight (log-zero) and
boundary value (same as the previous boundary value) anyway. This
overhead becomes especially evident with entropy pruned models,
since typically high-order n-grams get pruned more easily, and many
childless n-grams are left at the lower orders.

Instead of storing two values (the back-off weight and boundary
value) for every row, it may be more efficient to store a single pointer
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Fig. 2. Extended structure for orders n and n + 1. The arrays of
each order have been split into two parts (modified arrays shown in
bold). Back-off and boundary values are stored only for rows that
have children, but pointers are needed to access them.

value for every row, and omit childless rows from the back-off and
boundary arrays as shown in Figure 2. The pointer value simply tells
the index to use for back-off and boundary arrays. If row r is child-
less, the pointer value ptr(r) = ptr(r − 1). Otherwise, the pointer
value ptr(r) = ptr(r − 1) + 1. Since the pointer arrays are always
sorted, they can be compressed in the same way as boundary arrays
using Whittaker and Raj’s integer compression. The reader may no-
tice that the pointer array could be represented by one bit per row
(indicating whether the value is greater than previous). However, re-
trieving the values from the array would then be unreasonably slow:
linear with respect to length of the array.

For some orders, the extended structure may actually consume
more memory, in which case the order is stored in the baseline for-
mat. If integer compression is used, the amount of compression
achieved by the extended structure is hard to predict without build-
ing the structure, but experimental results presented in Section 4 shed
light on the issue. Also computational issues are discussed there.

4. EXPERIMENTS

4.1. Setup

The efficiency of the extended structure was evaluated on English
and Finnish language models.

The English models were trained using the New York Times par-
tition of the English Gigaword corpus [9]. 927 million words were
used for training, and 197 thousand words for computing perplex-
ities. The vocabulary was limited to 50000 words, and a 4-gram
model was trained with Good-Turing smoothing.

The Finnish models were trained on the Kielipankki corpus,
available from CSC [10]. The training set contained 145 million
words from newspapers, magazines and books. The evaluation set
contained 149 thousand words. Before training the language mod-
els, the words were split into 8428 sub-word units using the Morfes-
sor algorithm [11]. Splitting the words into smaller units improves
the language modeling performance considerably in Finnish and can
avoid the problem of out-of-vocabulary words [12]. A 6-gram model
was trained with Good-Turing smoothing.

For both languages, entropy pruning was used for producing
smaller models with pruning thresholds 10−9, 10−8 and 10−7. The
SRI Language Modeling Toolkit [13] was used for training and prun-
ing. The Finnish models were trained with the default cut-off values:
all n-grams occurring only once were ignored for n > 2. In the En-
glish case, 4-grams occurring only twice were also ignored.
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Pruning Baseline Extended Saving Compression /
(MB) (MB) (%) Float bits

10−7 14.3 11.9 17.2 yes / 8
10−8 128.5 116.6 9.2 yes / 8
10−9 463.3 418.9 9.6 yes / 8
none 637.8 582.0 8.7 yes / 8
10−7 20.7 19.1 7.8 no / 8
10−8 183.4 183.4 0.0 no / 8
10−9 666.7 666.7 0.0 no / 8
none 920.6 920.6 0.0 no / 8
10−7 20.7 15.8 23.7 yes / 16
10−8 182.5 156.3 14.4 yes / 16
10−9 654.8 558.9 14.6 yes / 16
none 899.5 776.5 13.7 yes / 16
10−7 27.1 23.1 15.0 no / 16
10−8 237.5 229.5 3.4 no / 16
10−9 858.2 829.5 3.3 no / 16
none 1182.4 1150.8 2.7 no / 16
10−7 33.5 23.7 29.2 yes / 32
10−8 290.7 235.5 19.0 yes / 32
10−9 1037.7 838.8 19.2 yes / 32
none 1423.0 1165.5 18.1 yes / 32
10−7 39.9 31.0 22.4 no / 32
10−8 345.7 310.9 10.1 no / 32
10−9 1241.2 1109.4 10.6 no / 32
none 1705.8 1539.8 9.7 no / 32

Table 1. English models: Comparing the sizes of the baseline and
extended structures, and the relative saving obtained by using ex-
tended structure instead of the baseline structure.

The compression performance of the structures was evaluated by
computing the memory footprint depending on the entropy pruning
threshold, quantization level of the floating point values, and whether
integer array compression was applied. English results are shown in
Table 1, and Finnish results in Table 2.

The computational efficiency of the structures was evaluated by
measuring the CPU time required for computing the perplexity of
the test data. The perplexity computation was repeated 20 times to
get robust measurements. Table 3 shows the results. The perplexities
of the models and the number of n-grams are shown in Table 4.

The C++ source code for the software used in the experiments is
available for download at http://www.cis.hut.fi/thirsima/. The pack-
age contains tools and libraries for compressing n-gram models in
baseline and extended structures, and using them in applications.

4.2. Discussion

A few clear trends can be seen in Tables 1 and 2. Firstly, the more
entropy pruning is applied, the more relative savings can be achieved
by the extended structure. This trend is quite natural since entropy
pruning creates more childless n-grams on lower orders, and the
extended structure specifically tries to represent childless n-grams
compactly. However, there are some differences between the lan-
guages. In the Finnish case, the extended structure does not seem to
achieve any compression on the unpruned models, but in the English
case it does. The reason is that higher cut-off values were used in
training English models which corresponds to moderate initial prun-
ing on the highest orders. Without the higher cut-offs, training En-
glish 4-gram models would have taken too much memory.

The second trend is that saving decreases when less bits are used

Pruning Baseline Extended Saving Compression /
(MB) (MB) (%) Float bits

10−7 8.8 7.2 18.3 yes / 8
10−8 52.4 44.8 14.4 yes / 8
10−9 201.8 190.3 5.7 yes / 8
none 407.3 407.0 0.1 yes / 8
10−7 12.8 11.9 6.9 no / 8
10−8 78.8 76.2 3.3 no / 8
10−9 303.2 303.2 0.0 no / 8
none 580.5 580.5 0.0 no / 8
10−7 13.0 9.8 24.8 yes / 16
10−8 76.8 60.9 20.6 yes / 16
10−9 293.2 261.7 10.8 yes / 16
none 582.4 581.5 0.1 yes / 16
10−7 17.0 14.6 14.2 no / 16
10−8 103.2 94.2 8.7 no / 16
10−9 394.5 387.3 1.8 no / 16
none 755.6 755.6 0.0 no / 16
10−7 21.5 15.0 30.1 yes / 32
10−8 125.6 93.2 25.8 yes / 32
10−9 475.9 402.3 15.5 yes / 32
none 932.6 904.7 3.0 yes / 32
10−7 25.5 19.8 22.2 no / 32
10−8 152.0 126.8 16.6 no / 32
10−9 577.3 543.8 5.8 no / 32
none 1105.8 1105.4 0.0 no / 32

Table 2. Finnish models: Comparing the sizes of the baseline and
extended structures, and the relative saving obtained by using ex-
tended structure instead of the baseline structure.

for floating point values, i.e., probabilities and back-off weights. The
effect of this quantization is twofold. The less bits are used for back-
off weight values, the less saving the extended structure can achieve
by omitting redundant back-off weights βM from the childless n-
grams. On the other hand, the less bits are used for the probabilities
αM, the smaller are the models overall, and the greater is the relative
benefit from the extended structure, because probabilities are needed
for all n-grams in both structures.

The third trend is that integer compression increases the rela-
tive compression of the extended structure. This is largely because
the pointer arrays are sorted arrays whose values grow slowly, and
the general integer compression seems to be very efficient on such
arrays.

As mentioned in Section 2.3, the word index compression was
not used in the experiments to keep the structures simpler. Since
the extended structure deals only with back-off and boundary arrays,
the word indices could be compressed normally. That would lead to
smaller models overall, and the extended structure would give rela-
tively better compression ratios.

In Table 3 we can see that the computational overhead of the
extended structure depends on whether integer compression is used
or not. Without compression, the additional pointer array introduces
minimal overhead, but after compression, the overhead becomes vis-
ible, since accessing the compressed pointer array is roughly loga-
rithmic with respect to the length of the array. It must be noted that
the straightforward implementations could certainly be optimized
further for both compressed and uncompressed structures, so the
computational comparison is only suggestive. In speech recognition
systems, the access to the main n-gram language model is usually
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Pruning Baseline Extended Overhead Compression
(s) (s) (%)

10−7 85.37 102.62 20.21 yes
10−8 103.48 143.88 39.04 yes
10−9 133.69 185.29 38.60 yes
none 171.55 248.49 44.85 yes
10−7 28.41 30.16 6.16 no
10−8 36.55 38.45 5.20 no
10−9 44.08 44.47 0.88 no
none 47.15 47.81 1.40 no

Table 3. Computational cost of the structures when computing per-
plexity of Finnish models with 32 bits per float.

English Finnish
Pruning Perplexity n-grams Word-perplexity n-grams

(M) (M)
10−7 303 3.3 23 220 2.1
10−8 232 31.1 12 805 12.5
10−9 214 112.4 11 017 50.3
none 212 156.7 10 984 108.2

Table 4. Perplexities and the number of n-grams in the models. The
perplexities of the Finnish models are normalized by the number
of whole words to allow comparisons with other experiments using
possibly other sub-word units for language modeling. The corre-
sponding token perplexities are 26.3, 21.7, 20.6, 20.6.

not the most computationally expensive part of the process, so the
access times of the compressed structures should be reasonable. As
look-ahead language models the compressed structures are probably
not applicable, since they are often accessed very heavily.

Table 4 shows the number of n-grams in the models and the
perplexities on the test set. As usual, the Finnish perplexities are
computed by normalizing the inverse probability with the number
of whole words even if the model uses sub-word units as symbols.
Using this “word-perplexity” makes it possible to compare perplex-
ities with other experiments that may use different sub-word units
for language modeling. The perplexities are naturally large when
compared to English. A single Finnish word often carries the infor-
mation of several English words by compounding words and using
prefixes, suffixes, and inflections.

The order of the language models were chosen as high as possi-
ble with without requiring to use cut-offs or other special techniques
heavily. In the Finnish, however, it is expected that even higher-order
n-grams are useful, when the words are split into smaller units [2]. It
is also probable, that the compression ratio of the extended structure
gets better on higher-order models.

5. CONCLUSION

An extension to a previously proposed method for compressing lan-
guage model structure was presented. By separating n-grams that are
prefixes to longer n-grams, the language models can be represented
more compactly without losing modeling accuracy. In experiments
on English 4-gram models and Finnish 6-gram models, the extended
structure obtained compression ratios between 0–30 % depending
on the entropy pruning threshold, amount of quantization and inte-
ger array compression used in the original models. The best ratios
are obtained on models that have been pruned with entropy pruning.
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