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ABSTRACT

Room reverberation degrades speech signals and poses a major
challenge to current monaural speech segregation systems. Previ-
ous research relies on inverse ltering as a front-end for partially
restoring the harmonicity of the reverberant signal. We show that
the inverse ltering approach is sensitive to different room con gu-
rations, hence undesirable in general reverberation conditions. We
propose a supervised learning approach to map a set of harmonic
features into a pitch based grouping cue for each time-frequency
(T-F) unit. We use a speech segregation method to estimate an ideal
binary T-F mask which retains the reverberant mixture in a local T-F
unit if and only if the energy of target is stronger than interference
energy. Results show that our approach improves the segregation
performance considerably.

Index Terms— Speech segregation, room reverberation, super-
vised learning, computational auditory scene analysis.

1. INTRODUCTION

In real-world acoustic environments, the speech signals reaching our
ears are often corrupted by noise and room reverberation. Many
techniques have been proposed to achieve monaural speech segrega-
tion or enhancement because one-microphone solutions are highly
desirable in various applications (see [1]). Existing studies, how-
ever, are largely limited to anechoic conditions and little research
has been developed to tackle the monaural segregation problem in
reverberant environments. In this paper, we study monaural segre-
gation of reverberant speech.

Inspired by the human auditory perception [2], computational
auditory scene analysis (CASA) aims to achieve good performance
in speech segregation based on perceptual principles [3]. From the
perspective of speech segregation, the notion of an ideal binary time-
frequency (T-F) mask has been proposed as the computational goal
of CASA [4]. Such a mask can be constructed from a priori knowl-
edge about target and interference; speci cally, a value of 1 in the
mask indicates that the target is stronger than interference and 0 oth-
erwise. Previous research has shown that speech reconstructed from
the ideal binary mask is highly intelligible and produces large im-
provements in robust speech recognition [4].

Segmentation and grouping are the two main stages of CASA
systems [5]. In segmentation, the input is decomposed into T-F seg-
ments, each of which is deemed to originate from a single source;
in grouping, those segments that come from the same source are
grouped into a stream by using harmonicity and other grouping cues.

However, under reverberant conditions, the effectiveness of group-
ing by harmonicity is degraded because reverberation causes re ec-
tions of each harmonic to combine additively with the direct sound.
Due to weakened harmonicity in the speech signal, the performance
of most monaural CASA systems is expected to suffer under rever-
berant conditions.

To restore speech harmonicity, one method is to estimate and ap-
ply an inverse lter of the room impulse response corresponding to
the target source [6]. Although inverse ltering partially counteracts
the smearing effect of reverberation on speech spectrum, it assumes
that a room con guration, e.g., room dimensions, wall re ection,
source and microphone locations, etc., be stationary. Even if the
source moves within a few centimeters range, the inverse lter needs
to be re-estimated [7]. To quantify such adverse effects, we system-
atically evaluate the sensitivity of inverse ltering to a number of
room con gurations with different source and microphone locations
and different reverberation times (T60).

Here, we propose a supervised learning approach to achieve
robustness against reverberation effects. Speci cally, we estimate
within each T-F unit a pitch based cue from a set of harmonic-related
features extracted from a reverberant signal for grouping. A multi-
layer perceptron (MLP) is trained for each channel of a gammatone

lterbank. The estimated grouping cues are utilized in the grouping
stage to accomplish segregation of reverberant speech.

The rest of the paper is organized as follows. The next section
evaluates the sensitivity of the inverse ltering approach. Section 3
presents the proposed supervised learning approach in detail. Our
system is evaluated and results are given in Section 4. Conclusions
are drawn in Section 5.

2. SENSITIVITY OF INVERSE FILTERING

The room impulse response characterizes reverberation of a speci c
room con guration (e.g., room size, re ection coef cient, and tar-
get/microphone location). A slight variation in the con guration
could cause a big difference in the room impulse response and its
inverse lter accordingly. In other words, if an inverse lter is es-
timated from the same room impulse response as what it applies to
(i.e., matched inverse ltering), it enhances speech harmonicity; oth-
erwise it further smears the harmonic structure. Fig. 1 demonstrates
the effects of applying the same inverse lter to the matched room
impulse response and a different room impulse response resulting
from a moved source location. Both of the room reverberation times
are T60 = 0.3 s. As can be seen in Fig. 1(b), the equalized response
is much impulse-like, indicating the success of reverberation atten-
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uation, while the mismatched room impulse response gets further
smeared in Fig. 1(d) when convolving with the same inverse lter.

We also quantitatively evaluate the sensitivity of inverse lter-
ing to different room con gurations. Signal-to-reverberant energy
ratio (SRR) is essentially a measure of intelligibility of reverberant
speech [8] and hence a good indicator of the effectiveness of inverse

ltering. SRR is de ned as:

SRR = 10 log10

�� t1

0

p2(t)dt
�� ∞

t1

p2(t)dt

�
. (1)

Here, p(t) is the instantaneous sound pressure of the room impulse
response measured at time t and t1 is the arrival time of the rst peak
from the re ected impulses. A larger SRR value indicates higher
intelligibility. Table 1 shows the SRR improvement after applying
the inverse lter to room impulse responses for six different rooms.
Each room has three sets of random (source1, source2, microphone)
locations corresponding to six room impulse responses (1a, 1b, 2a,
2b, 3a, 3b), where “a” refers to the impulse response from source1 to
the microphone and “b” from source2 (see Fig. 2 in Section 4). The
inverse lter is estimated from the reverberant speech generated by
the room impulse response (1a) in the room with T60 = 0.3 s using
[9]. To examine the sensitivity of inverse ltering, this estimated
inverse lter is used to convolve with all 36 room impulse responses
and SRR’s are calculated accordingly. It is evident, in Table 1, that
signi cant SRR improvement only occurs under the matched inverse

ltering condition. The SRR drops for almost all the other cases,
implying a further smearing effect caused by mismatched inverse

ltering. In conclusion, the inverse ltering approach is sensitive to
different rooms and different source and microphone locations. Such
a limitation hinders the applicability of this approach.

Table 1. Signal-to-reverberant ratio (SRR) improvement (in dB) by
applying the estimated inverse ltering to each room impulse func-
tion. Dimensions (in meter) and reverberation time of each room are
listed in the rst column.

Rm Dim. (T60(s)) 1a 1b 2a 2b 3a 3b
4×4×3 (0.1) -7.8 -6.8 -7.4 -6.0 -7.5 -8.4
5×4×3 (0.2) -3.7 -2.8 -3.8 -4.5 -4.4 -2.7
6×4×3 (0.3) 7.2 -2.1 -0.2 -2.9 -2.8 -2.3
7×5×3 (0.4) -1.5 -1.1 -0.3 -2.7 -0.8 -0.5
8×5×3 (0.5) -2.1 -0.4 -2.2 -1.4 -1.4 -1.4
9×5×3 (0.6) 0.0 1.2 -0.3 0.2 1.3 -0.1

3. SYSTEM DESCRIPTION

The signal received at a microphone, y(t), in a reverberant enclosure
undergoes both convolutive and additive distortions:

y(t) = hT (t) ∗ s(t) + hI(t) ∗ n(t), (2)

where “∗” indicates convolution. s(t) is the clean (or anechoic) tar-
get speech and hT (t) models the room impulse response from the
target speaker to the microphone, while n(t) is the anechoic inter-
ference and hI(t) models the room impulse response from the inter-
ference to the microphone. Given a one-microphone recording with
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Fig. 1. Effects of inverse ltering on room impulse responses. (a) A
room impulse response function generated by the image model in an
of ce-size room of the dimensions 6 by 4 by 3 meters with reverber-
ation time T60 = 0.3 s. Re ection coef cients are 0.73 for all the
walls, the ceiling, and the oor. The source and the microphone are
at (4, 0.9, 1) and (2, 1, 1), respectively. (b) The result of convolving
the impulse response in (a) with the estimated inverse lter. (c) A
different room impulse response function in the same room but with
the source location at (0.6, 2.4, 1). (d) The result of convolving the
impulse response in (c) with the estimated inverse lter.

the above setup, the goal of our system is to segregate the rever-
berant target out of the mixture. This is accomplished by retaining
time-frequency regions where a reverberant target speech is stronger
than reverberant interference and discarding those regions where the
reverberant interference is stronger. A monaural segregation system
is thus proposed for this purpose. It estimates grouping cues from
pitch-based acoustic features using trained MLP networks. Such
cues are then applied in the grouping stage of a monaural CASA
system to produce a binary mask that segregates the reverberant tar-
get.

3.1. Learning Grouping Cues

The idea of supervised learning is to estimate a grouping cue which
is the posterior probability of a T-F unit being target dominant given
a set of harmonic related acoustic features xc,m of time frame m and
channel c. Thus, we de ne the grouping cue Cg(c, m) as:

Cg(c, m) = P (H0|xc,m). (3)

H0 is the hypothesis that a T-F unit is target dominant and H1 oth-
erwise. This probability plays a crucial role in unit labeling in our
segregation system (see Section 3.2).

To extract acoustic features, the input mixture is rst analyzed
using a 128-channel gammatone lterbank [10] whose center fre-
quencies are quasi-logarithmically spaced from 50 Hz to 8 kHz [11].
In addition, envelopes are extracted for channels with center frequen-
cies higher than 800 Hz using a Teager energy operator followed by
a third-order Butterworth lter with cutoff frequency of 800 Hz. The
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outputs of all the channels are further high-pass ltered to 64 Hz to
remove the distortions due to very low frequencies. At a given time
step m, the correlogram A(c, m, τ) for channel c with a time lag τ
is computed using a window of 20 ms in every 10 ms interval. The
range for time delay τ is from 32 to 200 corresponding to the plau-
sible pitch range of 80 to 500 Hz. Following [12], we then construct
the feature vector as:

xc,m =

{A(c, m, τm), int(f̄(c, m)τm), f̄(c, m)τm−int(f̄(c, m)τm)

AE(c, m, τm), int(f̄E(c, m)τm), f̄E(c, m)τm−int(f̄E(c, m)τm)},
(4)

where τm is the pitch period for time frame m, A(c, m, ∗) and
AE(c, m, ∗) are autocorrelation functions, f̄(c, m) and f̄E(c, m)
are the estimated average instantaneous frequencies corresponding
to channel c of time frame m. The rst three features are based
on the gammatone lterbank responses while the last three based
on the envelopes of the responses (described earlier in the section).
Essentially, the rst and the fourth features capture the periodicity
for each T-F unit; the second and the fth features give the number
of harmonics; the third and the sixth features represent the distance
between the current pitch and the nearest harmonic.

We use a MLP to transform xc,m into Cg(c, m). At each frame
for each channel, the input to the MLP is the feature vector extracted
in (4). The desired output is set to be 1 if the target energy is stronger
than interference energy within a T-F unit and 0 otherwise. The prior
knowledge of the energies are obtained from the premixing target
and interference signals. We train 128 MLP’s for 128 channels, each
having the same network structure of 20 nodes in the hidden layer.
The number of nodes is justi ed using ten-fold cross-validation. The
transfer functions of the hidden and output layers are hyperbolic tan-
gent sigmoid and linear, respectively. Each MLP is trained using
Levenberg-Marquardt backpropagation [13] for 100 epoches.

3.2. Monaural Speech Segregation

The proposed monaural segregation algorithm follows the frame-
work of segmentation and grouping in [11]. Due to smeared har-
monic structures in reverberant speech, we found that both the peri-
odicity criterion in the low-frequency range and the amplitude mod-
ulation criterion in the high-frequency range [11] are no longer re-
liable for grouping. In this condition, our proposed grouping cue
as discussed in Section 3.1 is more robust and therefore a criterion
based on it can be a reasonable substitute. Consequently, we de-

ne a new criterion for unit labeling: A T-F unit ucm is labeled as
target speech if the posterior probability of it being target dominant
(P (H0|xc,m)) is greater than the probability of interference domi-
nant (P (H1|xc,m)). According to (3) and note that P (H0|xc,m) +
P (H1|xc,m) = 1, this criterion can be written as

Cg(c, m) > 0.5. (5)

Because the grouping cue is derived from the feature vector that cap-
tures both resolved and unresolved harmonics, the above criterion
should work well for unit labeling in both low- and high-frequencies.

In the proposed algorithm, the above criterion is rst used to la-
bel the units of the segments generated by the initial segmentation
based on temporal continuity and cross-channel correlation. Seg-
ments are then grouped into target or background streams according
to this labeling. Secondly, new target segments are formed by itera-
tively merging T-F units that are labeled as target dormant but not yet
grouped into the target stream in the previous grouping. Only those
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Fig. 2. Room con gurations with three sets of (target, interference,
microphone) locations randomly placed in the enclosure. Lines indi-
cate direct transmission paths from sources to the microphone within
each set.

segments longer than 50 ms are grouped into the target stream. Fi-
nally, the target stream is further re ned by iteratively absorbing the
neighboring units that do not belong to either stream but are labeled
as target dominant according to (5).

After the grouping stage, all T-F units belonging to the target
stream are labeled 1 and the other units labeled 0. Finally, a binary
mask is formed and the segregated target speech is resynthesized
from this estimated mask for evaluation.

4. EXPERIMENTAL RESULTS

In order to systematically evaluate the proposed system, we simulate
six rooms with different dimensions and reverberation times ranging
from 0.1 s to 0.6 s. The rst column of Table 1 shows the dimen-
sions and the reverberation time for each room. Then, as already
mentioned in Section 2, three sets of (source1, source2, microphone)
locations are randomly generated in each room, source1 being target
and source2 interference. Fig. 2 depicts an example of con gura-
tions in room 3 with T60 = 0.3 s. Each (source, microphone) pair is
characterized by a room impulse response calculated using the image
model [14]. Corpus is built by mixing a set of ten voiced male ut-
terances used in [15] as target and ve different types of interference
(including white noise, babble noise, rock music, a male utterance
and a female utterance). In particular, mixtures are created accord-
ing to (2), in which hT (t) and hI(t) are room impulse responses
of (target, microphone) and (interference, microphone) respectively.
The signal-to-noise ratio (SNR) is set to 0 dB for each mixture.

Given that the computational objective of our proposed system
is to identify T-F regions that are target dominant, we adopt the same
SNR measure in [11] using the resynthesized speech from the ideal
binary mask as the ground truth

SNR = 10 log10

��
t

s2
I(t)
��

t

(sI(t)− sE(t))2
�

, (6)

where sI(t) and sE(t) are signals resynthesized from the ideal bi-
nary mask and the mask estimated by our proposed system, respec-
tively.

We compare the performance of our proposed system to that of
Roman and Wang [6]. In their system, an inverse lter is rst esti-
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Table 2. Comparisons of SNR gain (in dB) between the proposed system and the Roman-Wang system.

Roman-Wang Proposed
T60(s) 0.1 0.2 0.3 0.4 0.5 0.6 0.1 0.2 0.3 0.4 0.5 0.6
Set 1 8.28 8.05 7.99 7.39 7.83 5.70 8.83 9.63 9.26 8.63 9.57 7.24
Set 2 9.09 8.10 7.97 7.85 6.53 6.92 9.48 9.58 9.15 8.39 7.76 7.98
Set 3 8.28 6.56 7.13 7.82 8.09 5.97 9.26 7.65 8.82 9.32 9.25 7.44

Average 8.55 7.57 7.70 7.69 7.49 6.19 9.19 8.95 9.08 8.78 8.86 7.55

mated by maximizing the kurtosis of the inverse- ltered LP residual
of the reverberant speech, which is generated by the room impulse
response between the target and the microphone from set 1 in room 3
(shown as the solid line in Fig. 2). The obtained inverse lter is
then applied to mixtures from different con gurations. Similarly, in
our proposed system, we only use mixtures generated from set 1 in
room 3 for the training purpose. To remove the in uence of pitch es-
timation errors to the segregation systems in comparison, we extract
a priori pitch contours from premixing reverberant targets for both
systems.

Segregation performance of the proposed system in terms of
SNR gain is summarized in Table 2. Each column in the table shows
the average SNR gains across all test utterances in three different sets
of (target, interference, microphone) con gurations in a room. The
last row shows the average SNR gains over different con gurations
in each room. As observed in Table 2, the proposed system achieves
considerably higher SNR gains across all different room reverbera-
tion times compared to the Roman-Wang system. This improvement
largely comes from the unit labeling in high frequencies because pre-
viously there was no reliable way to handle unresolved harmonics in
high frequency channels for reverberant signal. Through training,
both resolved and unresolved harmonics can be captured and units
in both low- and high-frequencies can be reliably labeled.

For different room con gurations, there is also a clear trend of
SNR drop as the room reverberation time increases. This indicates
that the level of reverberation is still an important factor that decides
the performance. The sensitivity of a system to different reverber-
ation conditions can be measured by the standard deviation of the
averaged SNR gains across all T60’s. The proposed system has a
standard deviation of 0.59, which is lower than that of the Roman-
Wang system, which is 0.76. This con rms the conclusion that our
system generalizes better to different T60’s.

5. CONCLUSIONS

In this paper, we have proposed a supervised learning solution to
monaural speech segregation in reverberant conditions. A grouping
cue is estimated using MLP’s for T-F unit labeling in the group-
ing stage. Our evaluation shows that the proposed system yields
considerable performance improvement over a previous approach in
terms of SNR gain and sensitivity to different reverberation condi-
tions. The key advantage of our system lies in the use of supervised
learning which circumvents the application of inverse ltering and
makes our system more generalizable to a variety of room con gu-
rations.
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