
SUBBAND-BASED BLIND SIGNAL PROCESSING FOR SOURCE
SEPARATION IN CONVOLUTIVE MIXTURES OF SPEECH

Kostas Kokkinakis and Philipos C. Loizou

Center for Robust Speech Systems,

Department of Electrical Engineering, University of Texas at Dallas,

P. O. Box 830688, Richardson, TX 75083–0688, USA

{kokkinak,loizou}@utdallas.edu

ABSTRACT

This paper describes a highly practical blind signal separation (BSS)
scheme operating on subband domain data to blindly segregate con-
volutive mixtures of speech. The proposed method relies on spatio-
temporal separation carried out in the time domain by using a multi-
channel blind deconvolution (MBD) algorithm that enforces separa-
tion by entropy maximization through the popular natural gradient
algorithm (NGA). Numerical experiments with binaural impulse re-
sponses affirm the validity and illustrate the practical appeal of the
presented technique even for difficult speech separation setups.

Index Terms—Subband filtering, blind source separation, multi-
channel blind deconvolution, convolutive speech mixtures.

1. INTRODUCTION

Blind source separation (BSS) is a prominent statistical signal pro-
cessing technique, which seeks to recover the individual contribu-
tions of a set of n unobserved but statistically independent (at each
time instant t) physical sources s(t) = [s1(t), . . . , sn(t)]T ∈ R

n,
while assuming little to almost no a priori knowledge about the
source-to-sensor geometry or the source signals themselves. To iso-
late the original or “true” sources in the most practical scenario of
multipath propagation, one needs to rely solely on information ex-
tracted from a set of m linear and convolutive mixtures of the origi-
nal signal streams x(t) = [x1(t), . . . , xm(t)]T∈ R

m given by

x(t) =

∞∑
�=0

H(�) s(t− �), t = 1, 2, . . . (1)

where H(�) represents an unknown but linear-time invariant (LTI)
multiple-input multiple-output (MIMO) mixing system, which can
accurately model the acoustic environment (or transmission chan-
nel) effects. Even for the most elaborate speech separation tasks,
BSS can blindly achieve the recovery of the original sources s(t),
by resorting only to the measurements observed at the sensor input,
such that the system outputs u(t) = [u1(t), . . . , un(t)]T ∈ R

n read

u(t) =

L−1∑
�=0

W(�)x(t− �), t = 1, 2, . . . (2)

where W(�) is the unmixing matrix linking the jth source estimate
uj(t) with the ith sensor observation xi(t), composed of sufficiently
long finite impulse response (FIR) filters with each element given
by vector wji(�) = [wji(0), wji(1), . . . , wji(L− 1)] for all coeffi-
cients 0 ≤ � ≤ L− 1 with j = 1, 2, . . . , n and i = 1, 2, . . . , m.
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Early BSS approaches focused on treating the problem entirely
in the time domain. Still, by having to employ fairly long unmixing
filters to reach an adequate level of separation, such techniques are
inherently slow and computationally inefficient for long reverbera-
tion times. Lured by the potential of substantially reducing excessive
computational requirements, many authors have recently suggested
to carry out separation in the frequency [13, 15] or the subband do-
main [4, 5, 6, 12]. The premise is to make efficient use of the discrete
Fourier transform (DFT) [4, 5, 13, 15], the discrete cosine transform
(DCT) [6], and even the generalized DFT (GDFT) [12] for short-
term stationary sources and transform costly convolution operations
into straightforward multiplications. By doing so, the overall BSS
task can be then elegantly reduced into several independent prob-
lems of instantaneous mixtures, one for each frequency subband.
Although, moving to the frequency or subband domain is compu-
tationally fast, such strategies come with perils of their own, namely
scaling and permutation ambiguities, which quite often have a nega-
tive effect on separation performance. Moreover, increasing the FFT
blocksize to cater for longer paths can work at the expense of poor
algorithm stability and convergence properties as reported in [2].

Recent literature has also seen some novel multichannel blind
deconvolution (MBD) methods being widely applied in the problem
of convolutive BSS [5, 7, 9, 10]. In stark contrast to purely based fre-
quency domain BSS techniques, MBD methods that partially operate
in the subband or z-domain are immune to any permutation dispar-
ities [10]. Furthermore, undesired whitening effects due to scaling
indeterminacies being translated into unknown linear filtering opera-
tions, can be completely alleviated to fully retain the original source
contributions at the system output [7, 9]. Nonetheless, by relying
on blockwise FFT operations to speed up the adaptation of the un-
mixing weights, MBD approaches may also face performance limi-
tations when longer estimation frames are employed [5].

The present contribution explores the concept of filter bank struc-
tures to perform BSS in the time domain by processing decimated
convolutive mixtures of speech. Due to the decimation made possible
by a reduced bandwidth in each subband, the proposed method can
achieve a high computational efficiency equivalent to that of a fre-
quency domain approach. The crucial difference to complex-valued
schemes [4, 5, 12] is that here we use modulation only on single
sidebands and hence operate on real-valued data, instead. This al-
lows us to promptly adapt FIR filters independently for each sub-
band with only a very small number of filter coefficients, and while
doing so to still remain unaffected by scaling and permutation arbi-
trariness. Experimental results substantiate the strong potential of the
proposed method even when long impulse responses are implicated.
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Fig. 1. Impulse response of the low-pass real-valued prototype FIR filter
f0(n) with length N = 512 (sampled at 8 kHz) used to derive the analysis
and the corresponding synthesis filter banks depicted in Fig. 3.

2. SUBBAND-BASED MULTICHANNEL BLIND
DECONVOLUTION

2.1. Subband Decomposition

By definition, subband decomposition encompasses the partitioning
of input streams of the observed mixtures xi(t) (i = 1, 2, . . . , m)
into a finite number of K subbands through filtering with a parallel
bank of FIR band-pass filters, the so-called analysis bank given by
fK−1(n). In practice, the subband analysis filter bank is efficiently
implemented as the cosine modulated version of a prototype filter
f0(n) of length N and cutoff frequency ωc = π/K such that [11]

fk(n) = f0(n) cos

[(
k − 1

2

)
nπ

K

]
. (3)

In a similar manner, the filters comprising the so-called synthesis
bank gK−1(n) used to reconstruct the original signals are given by

gk(n) = g0(n) cos

[(
k − 1

2

)
nπ

K

]
(4)

where the baseband synthesis filter g0(n) is actually a time-reversed
copy of the analysis prototype filter f0(n) equal to

g0(n) = f0(N − n− 1) (5)

with (3)–(5) defined for all n = 1, 2, . . . , N and k = 0, 1, . . . , K −
1. An important requirement for the design of an ideal linear-phase
low-pass prototype filter f0(n) is the near-perfect reconstruction (PR)
property, which stipulates a magnitude response of the form

||F0(e
jω)||=

{
1, 0 ≤ |ω | ≤ ωc

0, ωc < |ω | ≤ π.
(6)

Such a filter would perfectly separate the subbands, as well as yield
a flat composite magnitude response. In the time domain this could
ultimately be made feasible by resorting to a sinc(·) function of infi-
nite length. As shown in Fig. 1, for the design of the prototype filter
f0(n), we can employ a truncated sinc(·) function weighted by a
Hamming window w(n) instead, such that

f0(n) =
sin(nπ/N)

nπ
w(n) (7)

with w(n) = 0.54 − 0.46 cos (2nπ/N) and n = 1, 2, . . . , N . The
frequency responses of K =16 subband analysis filters derived from
cosine modulation of f0(n) according to (3) are depicted in Fig. 2.
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Fig. 2. Frequency response characteristics of the analysis filters for a uniform
filter bank consisting of K =16 channels. The stopband attenuation is equal
to 110 dB.

After the subband filtering stage, the effective bandwidth of the de-
composed sensor waveforms in each subband is reduced precisely
by a factor of 1/K compared to the wider bandwidth of the original
fullband signals. Therefore, the observed mixtures can be effectively
downsampled by an integer decimation factor M such that M ≤ K.
Overall, the subband analysis stage yields the real-valued signals

xi(k, τ) =

N∑
n=1

fk(n) xi(τ − n) (8)

with vector xi(·) defined in (1) for i = 1, 2, . . . , m and band k =
0, 1, . . . K − 1 where τ = rM now denotes the time index at the
reduced sampling rate for some integer r. Performing critical down-
sampling for M = K would result in the highest possible computa-
tional savings. Yet, to avoid any aliasing distortion effects between
adjacent bins when recomposing, it is often common practice to
oversample the signals by a factor M < K, instead (e.g., see [16]).

2.2. Time-Domain Subband Multichannel Blind Deconvolution

Since, in general the decimation factor is much smaller than the
length of the mixing (and unmixing) filters, such that M � L, the
signals in each subband are still considered convolutive mixtures of
the original sources. In effect, by working under the assumption that
spatial independence remains a plausible condition even after sub-
band filtering, the original sources can be recovered independently
on each subband. The added benefit is that because of decima-
tion, the length of the FIR filters we need to estimate is just L/M .
The isomorphic mapping between scalar and FIR polynomial ma-
trices (e.g., see [10]), allows several adaptation rules based on the
entropy maximization principle [3] to be extended and accommo-
date multipath effects. Such an efficient update rule is the linear
prediction-based natural gradient algorithm (LP-NGA) proposed in
[7, 9], which stems from the well-known NGA of [1]. When exe-
cuted separately for each subband in the two-source and two-sensor
convolutive BSS scenario, this reads

W
(k)
�+1(z) = W

(k)
� (z) + μ ΔW

(k)
� (z) (9)

where W(·) is the unmixing FIR polynomial matrix, μ denotes the
learning parameter and

ΔW
(k)
� (z)=

([
1̄ 0̄
0̄ 1̄

]
−FFT[ϕ(u)] uH

)(k)
(
W

(k)
11 W

(k)
12

W
(k)
21 W

(k)
22

)
. (10)

The vectors W
(k)
ji (·) defined for i, j = 1, 2, represent the unmixing

FIR filters at each subband k = 1, 2, . . . , K − 1 in the z-domain,
(·)H is the Hermitian operator, the matrix composed of a sequence
of all ones (1̄) in the main diagonal and all zeros (0̄) elsewhere (both
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Fig. 3. Proposed subband MBD structure consisting of a subband analysis, a separation and a subband synthesis stage in the two-source and two-sensor case.

with length L) is the identity (unit) FIR polynomial matrix, whereas
the term FFT [ϕ(u)] denotes the frequency domain vector of the
score function vector ϕ(u), operating in the time domain, given by

ϕi(ui)=− d

dui
log pui(ui), i = 1, 2. (11)

Although, statistical analysis for the probability density functions
(PDFs) of fullband speech samples indicates that a reasonably safe
approximation is the Laplacian distribution, a substantially better fit
can arise by using the generalized Gaussian distribution (GGD) fam-
ily (e.g., see [8]) as the hypothesized subband source PDF in (11),
which in turn yields the GGD-based score function [7, 9]

ϕi

(
ui(k)

)
= βi(k)

sign
(
ui(k)

)
|ui(k)| |ui(k)|βi(k)

(12)

where βi(k) represents the shape parameter of the GGD correspond-
ing to each individual source subband taking values between (0, 1].
After convergence of (9), the unmixing filters will produce estimates
of the original source signals on each subband, which in the 2 × 2
setting, after dropping the z-domain operator, can be written as(

u
(k)
1

u
(k)
2

)
=

(
W

(k)
11 W

(k)
12

W
(k)
21 W

(k)
22

)(
x

(k)
1

x
(k)
2

)
(13)

for every band index k = 0, 1, . . . K − 1. The source estimates
extracted at each subband, as shown in (13), are first moved back to
the time domain, then upsampled by the interpolation factor M , next
filtered by the synthesis filters in (4), and finally added together to
ultimately form the fullband recovered signals in the system output

uj(t) =

K−1∑
k=0

N∑
n=1

gk(n) uj(k, t− n) (14)

for j = 1, 2 with t denoting the time index at the restored sampling
rate, such that t = r/M . The proposed configuration and the order
of operations for MBD in the subband level for the 2 × 2 case, are
illustrated in Fig. 3.

3. EXPERIMENTAL RESULTS

To investigate the potential of the proposed subband-based MBD
method for achieving speech separation in challenging convolutive
environments, two speech signals are convolved with a set of bin-
aural room impulse responses (BRIRs) (e.g., see [14]). These ex-
hibit rapid variations both in phase and magnitude and are, in gen-
eral, fairly difficult to invert with FIR filters. The signals used as
sources are sentences of one male and one female speaker, 5 sec-
onds in duration, recorded at a sampling rate of 8 kHz, and nor-
malized so that their maximum amplitude is unity. The BRIRs are
measured in a 5× 9× 3.5 m ordinary classroom using the Knowles
Electronic Manikin for Auditory Research (KEMAR), positioned at
1.5 m above the floor and at ear level [14]. By convolving the speech
signals with the pre-measured impulse responses, one source is vir-
tually placed directly at the front of the listener and the other at an
angle of 60◦ in the azimuth to the right, while both are located at the
realistically conversational distance of roughly 1.2 m away from the
KEMAR. To further gauge the difficulty of this separation task, the
broadband reverberation time of the room is estimated by relying on
the time-reversed energy integration procedure to find the energy de-
cay curve that ultimately reveals the time required to reach a 60 dB
level of attenuation. As Fig. 4 indicates, for this particular enclo-
sure, TR =150 ms. To assess the separation ability of the algorithm,
we resort to the signal-to-interference-ratio improvement (SIRI) by
measuring the overall amount of crosstalk reduction achieved by the
algorithm before (SIRi) and after (SIRo) the unmixing stage, which
in dB is equal to

SIRI=10log

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

m∑
i=1

L−1∑
�=0

|uii|2

n∑
j=1

j �=i

L−1∑
�=0

|uij |2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
−10log

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

m∑
i=1

L−1∑
�=0

|xii|2

n∑
j=1

j �=i

L−1∑
�=0

|xij |2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(15)
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Fig. 4. Energy decay curves of the left-ear (solid line) and right-ear (dash
line) impulse responses at 60◦. The time taken for the amplitude to drop by
60 dB (thick line) below the original sound energy level is around 150 ms.

with x11(·), x22(·), u11(·), u22(·) representing the direct-channel
and x12(·), x21(·), u12(·), u21(·) the cross-channel individual con-
tributions of the orignal sources s1(·) and s2(·) for all i, j = 1, 2,
realized by creating two set of mixtures and source estimates after as-
suming that only one of the sources becomes active at each one time.
To compare, the standard fullband MBD update (e.g., see [7, 9])
and the new subband-based MBD update procedure shown here in
(9)–(10) are put forward to separate the aforementioned convolu-
tive speech mixtures. Filter lengths of L = 1,024 and L = 2,048
corresponding to impulse response lengths of 128 ms and 256 ms,
respectively, are chosen for the fullband MBD. The original mix-
tures have an input SIRi equal to –1.28 dB. Around 10 seconds of
data are used for training, while the algorithm performs 20 passes
through the data. The SIRo values measured at the system output are
depicted in Table 1, for both filter lengths. The same data are also
tackled with the proposed subband domain MBD approach. In this
case, the number of subbands is set to K = 32 and the downsam-
pling factor is M =24. The prototype filter to generate the subband
analysis and synthesis filter banks is shown in Fig. 1. Despite the
fairly long length of filter f0(n) (N = 512), we can still afford to
keep the separation filters Wji(·) short. At any event, fast compu-
tations during the subband level processing (analysis and synthesis)
and separation stages are guaranteed by performing filtering oper-
ations in the frequency domain, but reconstructing the final source
estimates back in the time domain with the standard overlap-save
algorithm. The original mixtures have an SIRi value of –0.76 dB1.
The algorithm operates with FIR filters of L = 32 and L = 64,
which are equivalent to just a 4 ms and 8 ms delay, respectively. The
amount of training and number of passes remain unchanged. We
use the same score function in (12) (β = 0.8) with μ tuned for
maximum performance, while the overlapping between successive
frames (or blocks) of data is set to 50 %. As revealed from the SIRo

values calculated after the subband MBD algorithm converges, the
overall SIRI is equal to 8.87 dB for length L = 32 and 10.74 dB for
L = 64, which are almost identical (L = 1,024) or substantially
higher (L = 2,048) than the SIRI values obtained for the fullband
MBD approach. The documented performance is indicative of the
ability of our technique to adequately cancel out long delay paths,
even with relatively short FIR filters while operating with a low com-
putational complexity, overall reduced by a factor of c = 2M2/K.

4. CONCLUSIONS

In this paper, we take on a new subband-based BSS scheme relying
on an MBD method, which combines the natural gradient with the
entropy maximization criterion to separate convolutive mixtures of

1SIRi values in Table 1 corresponding to subband MBD are measured at
a subband level and are thus different from the ones cited for fullband MBD.

BSS Method Filter length SIRi |SIRo

Fullband MBD 1,024 –1.28|7.82

2,048 –1.28|5.23

Subband MBD 32 –0.76|8.11

64 –0.76|9.98

Table 1. Separation performance for fullband and subband MBD methods.

speech in the time domain. Experiments in a challenging convolutive
setup signify the novelty and potential of our approach by proving
that subband MBD can match or even outperform fullband MBD in
terms of performance at a highly reduced computational cost.
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