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ABSTRACT

In this paper we present a method for echo detection and
echo path delay estimation using a pattern recognition
approach. We consider the problem of echo detection as 
attempting to match a speech pattern in the near-end signal 
to the far-end signal at a given delay. Employing features
and techniques that have been successfully used in speech 
recognition, we define a spectral similarity function based 
on cepstral correlation.  We show, through experimental
results, that the proposed similarity function can reliably
detect acoustic echoes and correctly estimate the echo path
delay. Further, it is shown that the similarity function can be
used in the detection of double-talk conditions. The method
presented here is applicable to both electrical (hybrid) 
network echoes as well as to acoustic echoes. 

Index Terms— Echo detection, echo control, double-
talk detection

1. INTRODUCTION 

The detection and suppression of acoustic echoes in
telecommunication networks have become increasingly
important with the proliferation of wireless networks. In
non speaker-phone situations, the severity of acoustic
echoes depends mainly on the design of the specific handset
used during a given call. The design of the handset casing
and the placement of the mouth piece relative to the
earpiece play critical roles. In speaker-phone cases, the 
placement of the speaker and microphone as well as the
room acoustics are the major factors in the level of acoustic
echoes introduced.  Acoustic echoes can also be present in
wireline networks for the same reasons outlined above. In 
addition, wireline networks have to deal with electrical
echoes caused by impedance mismatch at the 2-to-4 wire
conversion hybrid.

In many cases, it is desirable to suppress any acoustic
echoes that may be present in the voice path. In order to
successfully suppress these echoes, they must, first, be 
detected, and the corresponding echo path delay estimated.
Echo detection and delay estimation are also important in

Quality of Service (QoS) monitoring applications, where
telephone service providers are interested in measuring the
voice path quality of their networks.  In these monitoring
applications, echo detection needs to apply to both acoustic
and hybrid echoes. 

Many methods for echo detection and suppression have 
been proposed [1,2]. If echoes are known to be electrical,
then an adaptive linear filter can be used effectively to
detect as well as cancel the echoes. In cases where acoustic
echoes are to be detected and suppressed or cancelled, linear
filtering may not produce adequate results and other 
strategies must be applied [3]. Furthermore, echoes during
double-talk need to be distinguished from echoes during
single-talk. In this paper we present a framework and
method for echo detection and echo path delay estimation
for acoustic as well as electrical echoes.  In our framework,
we consider the problem of echo detection as a pattern
recognition problem and apply techniques and features that
have been successfully used in speech recognition.

The paper is organized as follows. In the next section,
the approach and framework that we employ in this work
are presented. Then, in Section 3, a similarity function
based on cepstral correlation is proposed as the pattern
recognition measure. Experimental results are given in
Section 4, followed by conclusions.

2. PATTERN RECOGNTION APPROACH 

Figure 1 depicts a block diagram of an echo detection
system.  The far-end signal is denoted  and the near-
end signal, is composed of near-end speech, 
near-end noise, and an echo of   In this work we
segment and  into frames.  A delay line of
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frames are kept for  where ),(kx L  depends on the largest
echo path delay that is to be detected. Therefore, the delay 
line consists of L  bins, where each bin represents a delay 
range within the frame duration of  A set of spectral 
parameters are computed for each frame in the delay line as
well as for the current  frame.  A similarity function is 
defined to measure the similarity between a given

).(kx

)(ky
)(ky

IV ­ 9091­4244­0728­1/07/$20.00 ©2007 IEEE ICASSP 2007



frame and each frame in the bins of the  delay line.  Let 
be the similarity function between the mth frame of 

 and the frame in the ith bin of the delay line,
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)(mfi

)(ky Li1 .
The similarity function ,  is then defined as ),(mfi

 (1) ),,()( mii YXfmf
where is a feature vector representing parameters
extracted from the frame in the ith bin of the delay line of

 and  represents the feature vector for the mth

frame of   If an echo is present in a given  frame
then the similarity function between the frame in the delay
line bin corresponding to the echo delay and the  frame
will consistently exhibit a larger value compared to the
other similarity functions for the  rest of the delay line bins.
A short or long term average of across the index
when plotted as a function of the index
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exhibit a peak at the index that corresponds to the echo path
delay in the near-end signal,  A threshold can be 
applied to either the instantaneous  or the averaged 
(smoothed) version of it to detect potential echoes. The echo
path delay can be readily estimated from the delay line bin
index, i* , where 
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One way to view the above approach is to relate it to speech
recognition. We can imagine that each bin in delay line 
corresponds to a word or phrase in the recognizer
vocabulary set. In speech recognition, a statistical model is 
trained for each word in the vocabulary set. Here our model
for a given word (i.e., a given delay line bin) is not
statistical, but rather the exact set of frames that pass by that
bin in the delay line. The unknown signal to be recognized
is the near-end signal,  Similar to speech recognition, 
we use the partial or total cumulative score of the similarity
function between the model and the unknown signal to
determine if there is a word match (i.e., echoes), and if so,
what word (i.e., echo path delay) was present in the
unknown signal.
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3. SIMILARITY FUNCTION 

Considering the speech recognition perspective, we can
bring to bear some of the advances that have been made in
that field to the echo detection problem. Specifically, one of
the critical issues in speech recognition is what set of 
features to use so that the recognition results are somewhat
immune to convolutional and additive noise components.
The analogy in the echo detection case is that we are trying
to recognize the unknown signal,  from the model
signal,  where  has been corrupted by
convolutional and non-linear noise components and additive 
noise components representing near-end noise and/or near-

end speech. The one exception is that during near-end
speech, it is desirable to detect double-talk if it occurs. 
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Figure 1. Echo Detection System.

In speech recognition, the use of features based on the 
Mel-Frequency Cepstral Coefficients (MFCC) has been 
almost universal [4,5]. Further, the augmentation of the
MFCC’s with their first and second order derivatives (i.e.,
delta and delta-delta cepstral coefficients) has been shown 
to improve accuracy [5]. These delta and delta-delta 
dynamic features are inherently robust against convolutional
noise due to their very definition. Since echoes over short
segments can be approximated as having significant linear
components, these dynamic features are well suited for echo 
detection. Therefore, the feature vector that we will employ
in this work consists of 12 MFCC’s, and their first and
second order derivates for a total of 36 features. Although
an energy parameter is also used as a feature in speech
recognition, we decided not to include it here because of the
possibility of near-end speech energy as well as the echo 
return loss. 

It has been shown that using cepstral correlations as a 
similarity measure is robust against additive noise and 
outperforms spectral distance measures based on the L2
norm [6]. It was further shown in [6] that cepstral vectors 
with large norms are more immune to additive noise than
cepstral vectors with small norms.  Therefore, we define our 
similarity function based on the one defined in [6].
Specifically, we define the similarity function as the
correlation coefficient between  and  weighted by the
norm of as follows:
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where is the correlation coefficient given by, ),( mi YXr

.),(
mi

m
T
i

mi YX
YX

YXr (4)

In speech recognition, the cepstral coefficients are 
typically liftered before the recognition distance function is
computed. It is noted that the variance of the cepstral 
coefficient tend to decrease with increasing quefrency index
[7]. Cesptral liftering usually takes the form of normalizing
the cepstral coefficients by their variance so as to equalize 
the contribution of each coefficient in the recognition 
distance function.  In this work we normalize  each feature 
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Figure 3. The similarity function mean (over speech 
frames) versus echo path delay for different Echo-
to-Noise Ratios where the noise is mall noise.

Figure 2. The similarity function mean (over speech 
frames) versus echo path delay for different Echo-
to-Noise Ratios where the noise is car noise.

in the feature vector by its respective variance. The feature 
vector variance can be determined offline using a speech 
database, or, in the case of processing  and  in a 
batch mode, by computing the feature variance over all
frames that include speech in the two signals  and 

.  The later method for estimating the feature variance
is used in this work. With variance normalization, the
similarity function in equation (3) can be written as 
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where U is a diagonal covariance matrix.

4. EXPERIMENTAL RESULTS 

To test effectiveness of the proposed echo detection method,
a system was set up where actual echoes over a commercial
2G GSM network can be recorded. We chose, at random,
six sentences spoken by a female speaker, and concatenated
them with a period of silence after each sentence.  The 
system enabled an audio file to be played to a mobile
handset over an actual call within the GSM network. Any
echo suppression within the network was turned off. We
then recorded any echoes that returned from the mobile
handset operating in non speaker-phone mode. In this setup,
no electrical echoes are possible and any echoes recorded 
are purely acoustic due to, among other factors, the design
of the mobile phone itself. Further, due to typical 2G GSM
network architecture, the recorded echoes would have gone 
through a double encoding/decoding using the GSM voice
codec, before arriving at our recording station.  Therefore, 
because of the acoustic nature of the echoes, and the tandem
encodings, there is a significant degree of non-linearity in
the recorded echoes.

To generate different echo conditions, we scale the
recorded echo to a desired level and shift it to a
predetermined echo path delay. We then mix it with near-
end noise and/or speech to simulate a typical near-end 
signal,  We compute the similarity function, given in
equation (5), over 20 msec. frames, updated every 10 msec.
This results in a 10 msec granularity in estimating the echo
path delay, implying a confidence interval of 
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5 msec.
Figures 2 and 3 show plots of the similarity function values
versus echo path delay. The similarity function value at any
given delay represents the mean value over the 6-sentence
utterance. However, to remove the bias caused by including
silence periods in the averaging process, a Voice Activity
Detector (VAD) was employed to identify non-silence
periods in the far-end signal,  The similarity function
mean was then computed only over non-silence periods as
determined by the VAD. The specific VAD used in our
experiment is the VAD (Option 1) that is part of the 3GPP 
specification for the 12.2 kpbs Enhanced Full Rate coder 
[8]. In figures 2 and 3, the far-end signal level is -17 dBm,
and the Echo Return Loss (ERL) in the near-end signal is 25
dB. The echo path delay is 175 msec. The near-end signal
was constructed by mixing the echo signal with different
type noises at varying Echo-to-Noise ratios (ENR).  As a 
baseline, we also include in Figures 2 and 3 the case where
there is only noise at -30 dBm, and no echo in the near-end
signal. Figure 2 shows the results when the near-end noise
was recorded in a car driving on a highway, while Figure 3 
shows the results when the noise was recorded in a crowded 
shopping mall.
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It is clear from Figures 2 and 3 that even at low ENR,
the proposed method results is a clear peak at the correct
echo path delay despite the fact that the echoes have a
degree of non-linearity due to their acoustic nature and 
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codec effects. Compared with the case of no echo, it is
evident that a reasonable threshold can be applied to detect
echoes and estimate the echo path delay correctly. It is
useful to note also, that the mall noise is basically babble
noise. Nevertheless, the proposed method is able to properly
identify the echo, although the peak values at the correct
echo path delay are somewhat smaller than the case when 
the noise is car noise.  Also, the difference in the peak value 
at different ENR’s are larger in the case of mall noise 
compared to the car noise case. This can be due to the fact 
that the mall noise has speech-like components.

Figure 4 shows the behavior of  during periods
of single-talk, double-talk, and no speech.  In the top part of 
the figure,  is plotted as a function of the time index,

 The middle plot is the near-end signal, while the bottom
plot is the far-end signal. The near-end signal is constructed
by mixing the following three signals:
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Figure 4. The similarity function performance when the
near-end signal consists of echo, car noise, and near end 
speech in both single-talk and double-talk conditions. 

1. Echo of the far-end at 25 dB ERL and 175 msec. delay.
2. Near-end car noise at Echo-to-Noise ratio of 5 dB.
3. Near-end speech at -17 dBm.

The near end speech starts around 17 seconds into the signal 
and consists of four sentences spoken by a male speaker. 
The first two sentences do not overlap with far end speech, 
while the last two sentences do overlap, producing double-
talk condition.  The top plot of Figure 4 represents a
smoothed version of the similarity function,  at 
index, corresponding to an echo path delay of 175 msec.
The smoothing is performed using
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where is the smoothed similarity function, and )(mfi is
constant set to 0.95. 

Comparing regions where there is echo, to regions
where there is only near-end noise or near-end noise plus
near-end speech, we can see that the smoothed similarity
function is able to discriminate well echo and no echo
regions.  Further, when comparing double-talk regions to
single-talk regions, we can see that the value of the
similarity function values are lower than the values in
regions where only the far end is talking and higher in
regions where there is no echo. These results show that the 
similarity function can reliably detect echoes  and can help
identify double-talk regions.

5. CONCLUSIONS 

We presented a method for echo detection and echo path
delay estimation based on a pattern recognition approach. 
The problem of echo detection is cast as a problem of 
speech pattern recognition where the specific delay interval 
in the far-end signal represented a pattern to be matched
with the near-end signal. Using features and techniques that
have been widely used in speech recognition, we defined a
similarity function based on cepstral correlations. We

showed, through experimental results, that the similarity
function is able to detect echoes and correctly estimate echo
path delay. Further, it was shown that the proposed method
is useful in detecting double-talk conditions. 
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