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ABSTRACT

A novel speech enhancement algorithm based on both a decompo-
sition of speech into coexisting deterministic and stochastic compo-
nents and a psychoacoustic model is proposed. Noisy speech is rst
decomposed into deterministic and stochastic components, and then
each component is enhanced preserving its individual characteris-
tics. A psychoacoustic model is taken into account when enhancing
the stochastic component which usually has much lower energy than
the deterministic component. Simulation results show that the pro-
posed algorithm performs better than some of the more popular algo-
rithms in terms of segmental signal-to-noise ratio (SNR) and speech
recognition rate.

Index Terms— Speech enhancement, deterministic component,
stochastic component, masking threshold

1. INTRODUCTION

It is understood that the presence of background noise can degrade
the performance of many speech communication and recognition
systems. Most important of all, noise induces fatigue on a listener.
For these reasons, a variety of enhancement algorithms have been
proposed [1], [2], [3], albeit with limited success. Part of the reason
for their limitation relates to the simplistic model assumption which
the past enhancement algorithms are based on. Often, these algo-
rithms are derived under the assumption that speech signal or speech
spectral coef cients follow either deterministic model or stochas-
tic model. In [2] and [4], speech enhancement algorithms are de-
rived under the deterministic speech model. In [3] and [5], speech
spectral coef cients or speech spectral amplitudes are stochastically
estimated assuming the coef cients follow a certain probability dis-
tribution. In general, both deterministic and stochastic components
coexist in speech. Observation of the short-time spectra often indi-
cates that speech is composed of a mixture of harmonically mod-
ulated sinusoids and some random noise. Therefore, enhancement
algorithms derived under either only stochastic model or determin-
istic model are limited in performance since it does not capture the
full speech characteristics.

In this paper, a novel algorithm that is based on coexisting de-
terministic and stochastic models is proposed. In terms of speech
production, the deterministic component can be thought of as the
voiced speech and the stochastic component as the unvoiced speech.
Noisy speech is rst decomposed into deterministic and stochastic
components, and then each component is enhanced preserving its
individual characteristics. Generally, it is more dif cult to estimate
the stochastic component than the deterministic component since the
former is of lower energy than the latter. In this work, a psychoa-

coustic masking threshold is used to adaptively enhance the stochas-
tic component.

This paper is organized as follows. Section 2 presents a co-
existing deterministic and stochastic model. Section 2.1 presents
enhancement of deterministic component. Section 2.2 presents en-
hancement of stochastic component using psychoacoustic model.
Section 3 shows the simulation results, and Section 4 concludes the
paper.

2. SPEECH ENHANCEMENT BASED ON THE
COEXISTING DETERMINISTIC AND STOCHASTIC

MODEL

Speech consists of deterministic and stochastic components, and both
windowed components are denoted respectively as vw[n] and uw[n].
Thus, a windowed speech segment sw[n] can be represented as

sw[n] = vw[n] + uw[n] (1)

where subscript signi es that each term is a short-time segment which
is obtained by applying a window function w[n]. In the Fourier do-
main, it is represented as

S(k, l) = V (k, l) + U(k, l) (2)

where S(k, l), V (k, l) and U(k, l) are Fourier coef cients for fre-
quency bin k and time frame l of clean speech, the deterministic
component, and the stochastic component, respectively.

In many speech applications of today, speech is considered as
a response of a linear time varying lter driven by excitation which
is a sum of periodic impulse train and white noise sequence. The
deterministic component represents the response due to the periodic
impulse train and the stochastic component represents the response
due to the white noise sequence.

When speech is corrupted by additive noise as follows

y[n] = s[n] + z[n], (3)

the Fourier coef cients satisfy the following equation

Y (k, l) = S(k, l) + Z(k, l)

= V (k, l) + U(k, l) + Z(k, l)

= V (k, l) + X(k, l) (4)

where Y (k, l) and Z(k, l) are Fourier coef cients of noisy speech
y[n] and noise z[n], respectively. Further, we assume that speech and
noise are uncorrelated, and the Fourier coef cients of both U(k, l)
and Z(k, l) follow a zero-mean Gaussian distribution.
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When speech degraded by additive random noise is decomposed
into coexisting deterministic and stochastic components, the bulk of
the noise energy appears in the stochastic component [6]. Thus, the
deterministic component V (k, l) is relatively less corrupted by the
noise process. In this paper, the Fourier coef cients of noisy speech
is assumed to follow a non-zero mean complex Gaussian distribu-
tion, which is given by

f(Y (k, l)) =
1

πσ2
x(k, l)

exp

{
−|Y (k, l) − V (k, l)|2

σ2
x(k, l)

}
(5)

where σ2
x(k, l) is the variance the Fourier coef cient X(k, l) and

equals the sum of the variance of the stochastic component and the
noise, that is, σ2

x(k, l) = σ2
u(k, l) + σ2

z(k, l). In terms of speech
production, the deterministic component is constructed to have the
properties of a voiced speech (a sum of harmonically modulated si-
nusoids) and the stochastic component to have the properties of a
unvoiced speech (autoregressive (AR) signal).

The scheme of the proposed enhancement algorithm is shown
in Fig. 1. The system enhances the deterministic component and
the stochastic component preserving its individual characteristic, re-
spectively. The stochastic component is characterized as AR random
noise and is estimated using a Wiener lter which is adaptively con-
trolled by a masking threshold of the stochastic component. The
deterministic component is characterized as a sum of harmonically
modulated sinusoids and is estimated by synthesizing the sinusoids
using the estimated parameters. Since the masking threshold of
the stochastic component is dif cult to calculate from noisy speech,
speech is roughly estimated, and it is used to compute the masking
threshold of the stochastic component. The masking threshold of
the stochastic component as well as stochastic model parameters are
computed iteratively.

2.1. Enhancement of deterministic component

As previously mentioned, the deterministic component can be viewed
as the voiced component of speech and is only slightly degraded by
the noise process compared to the stochastic component. The deter-
ministic component is modeled mathematically as a sum of harmon-
ically modulated sinusoids over the time duration of the window.
The pitch period in lth frame, P0(l), can be used to form a harmonic
series representation for the deterministic component as follows

V (k, l) =

M(l)∑
m=−M(l)

Am(l)W ((k − mk0(l)) mod N) (6)

whereW (k) is the Fourier coef cients of the window function w[n]
and N is the number of DFT points. The parameter Am(l) repre-
sents the amplitude of mth harmonic in lth frame. The parameter
k0(l) represents the fundamental frequency in lth frame which is
related to the pitch period P0(l) as

k0(l) =
N

P0(l)
. (7)

The number of harmonics in the lth frameM(l) is a function of the
fundamental frequency and is given by

M(l) =

⌊
N

2k0(l)

⌋
(8)

where �·� denotes the smallest integer less than or equal to the argu-
ment.
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Fig. 1. Block diagram for dual excitation speech enhancement using
psychoacoustic model.

For the enhancement of the deterministic component, the pitch
is estimated using a robust algorithm developed by Grif n et al. [7].
The harmonic amplitude Am(l) is adjusted as follows

Ām(l) =

{
Âm(l), if |Âm(l)| > αv

√
σ2

z(mk0, l)
0, otherwise (9)

where Âm(l) is a harmonic amplitude estimate from noisy speech.
Here, αv is an oversubtraction factor for deterministic component
enhancement, and σ2

z(mk0, l) is a noise power spectrum density es-
timate atmth harmonic.

2.2. Enhancement of stochastic component

According to a speech production model, unvoiced speech can be
represented as the response of a linear quasi-stationary system to
a noise-like excitation. For this reason, the stochastic component is
modelled as an output of an AR process of order p. This is expressed
mathematically as

p∑
i=0

biuw[n − i] + G · d[n] = 1, b0 = −1 (10)

where G and d[n] represent the gain and white Gaussian noise with
zero mean and unit variance, respectively.

The minimummean square error (MMSE) estimate of the stochas-
tic component is the conditional mean and is obtained using the

IV ­ 898



Wiener lter. The stochastic component estimate is given by

Û(k, l) = E[U(k, l)|Y (k, l), V̂ (k, l)]

=
σ2

u(k, l)

σ2
u(k, l) + σ2

z(k, l)
(Y (k, l) − V̂ (k, l))

=
σ2

u(k, l)

σ2
u(k, l) + σ2

z(k, l)
X̂(k, l). (11)

Here, σ2
u(k, l) is represented by bi and G as follows,

σ2
u(k, l) =

G2∣∣∣1 − ∑p
i=1 bie

−ji 2π
N

k
∣∣∣2

. (12)

Since the energy of the stochastic component is generally much
lower than that of the deterministic component, it is dif cult to es-
timate the stochastic component from noisy observation. Using the
masking property of a psychoacoustic model, the stochastic compo-
nent is estimated as proposed in [8]. The oversubtraction factor of
the Wiener lter is controlled by the masking threshold of stochastic
component.

The new MMSE estimator is given by

Û(k, l) =
σ2

u(k, l)

σ2
u(k, l) + αu(k, l)σ2

z(k, l)
X̂(k, l) (13)

where αu(k, l) is the oversubtraction factor of stochastic component
and is adjusted by the masking threshold Tu(k, l). The calculation
of the masking threshold is summarized in a number of literatures
[8] [9]. The steps involved in determining the masking threshold are
as follows:

1. Critical band analysis : sum up the power spectrum in each
critical band (Bark), where the power spectrum is obtained by
magnitude squaring the Fourier coef cient.

2. Spreading : convolve with a spreading function to take into
account the effect of adjacent critical bands.

3. Offset : subtract the offset by considering the tone-like or
noise-like nature of the speech.

4. Re-normalization : convert the spread spectrum back to Bark
domain.

5. Absolute threshold : compare with the absolute threshold and
choose the maximum between them.

The adjustment αu(k, l) is obtained by the following

αu(k, l) = Fαu [αmin, αmax(ξ̄u(l)), Tu(k, l)] (14)

where αmin is the minimal value of the oversubtraction factor and
typically equals to 1, and αmax(ξ̄u(l)) is the maximal value and a
function of ξ̄u(l). It will be explained in more detail soon.

Here, Fαu = αmax(ξ̄u(l)) when Tu(k, l) = Tu(k, l)min and
Fαu = αmin when Tu(k, l) = Tu(k, l)max. When the masking
threshold is high, speech signal is strong and residual noise is nat-
urally inaudible. Hence, the noise reduction should be low in order
to reduce speech distortion. On the other hand, when the masking
threshold is low, speech signal is weak and residual noise may be
annoying to listener. So, the noise reduction should be high in or-
der to reduce noise. Other values between two extreme cases are
interpolated based on the logarithmic values of Tu(k, l).
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Fig. 2. Adjustment of αmax. The equation is αmax =
1

0.25+e10 log10 ξ̄(l)−12 + 1 which is decided based on the value of
SegSNR.

When signal-to-noise ration (SNR) is high, noise reduction needs
to be reduced. For this reason, αmax is a function of SNR. Here,
ξ̄u(l) is the average value of a priori SNR in lth frame,

ξ̄u(l) =
1

N

N∑
k=1

σ2
u(k, l)

σ2
z(k, l)

. (15)

Hence, when ξ̄u(l) is low, αmax is a large value and the noise re-
duction is strengthened. The converse happens when ξ̄u(l) is high.

To estimate the stochastic component more accurately, an itera-
tive method is used. In other words, αu, bi andG are obtained itera-
tively. Thus, the stochastic component estimator is iterative Wiener
lter.

3. PERFORMANCE EVALUATION

In this section, the performance of the proposed algorithmwas evalu-
ated and compared to other speech enhancement algorithms. The test
sentences were selected from TIMIT database. The Kaiser window
with β = 7 was used with frame size N = 512 (32ms) with 50%
overlap. The performance of the proposed algorithm was evaluated
in terms of segmental signal-to-noise ratio (SegSNR) and speech
recognition rate. The SegSNR is de ned as

SegSNR = 1
T

∑T−1
m=0 10 log10

(
1
N

∑N−1
n=0 s2[n+Nm]

1
N

∑N−1
n=0 (s[n+Nm]−ŝ[n+Nm])2

)
,

where s[n] and ŝ[n] are the original clean speech samples and the
estimated speech samples. The upper and lower bound of the frame
SNR were set to 35 dB and -10 dB respectively. All SegSNR results
were averaged over 20 different speech signals.

For speech recognition test, we created new database by adding
white Gaussian noise and f16 cockpit noise to the test set of TIMIT
database, respectively. The input SNR level was set equal to 5 dB. In
the speech recognition test, the mono-phone hidden Markov models
(HMMs) of three states with 16 Gaussian mixtures and 39 dimension
MFCC features were used. The HMMs were trained on clean speech
training set and tested on noisy and enhanced versions of the testing
set with free phone grammar. The speech recognition rate is mea-
sured in terms of phone correction rate (PCR) and phone accuracy
rate (PAR).

The AR order of stochastic component model was set to p = 30.
In the simulation, the parameters of algorithm were set to the follow-
ing values: αv = 3, αmin = 1, and αmax = 1

0.25+e10 log10 ξ̄(l)−12 +

1 (shown on Fig. 2). Their parameters were heuristically chosen
based on the performance of SegSNR. The proposed algorithm was
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Fig. 3. (a) SegSNR improvement of proposed algorithm and other
algorithms in white Gaussian noise. (b) SegSNR improvement in
f16 cockpit noise.

compared to spectral subtraction (SS) [1], Wiener lter (WF), and
MMSE-STSA estimator (M-S) [3]. For WF and M-S, a priori SNR
was estimated with the decision directed method with α = 0.98 as
proposed in [3].

In Fig. 3 (a), the average SegSNR improvement using the pro-
posed algorithm in various white Gaussian noise level is shown.
In this result, the proposed method performed better than the other
methods, and it performed better with lower SNR. Fig. 3 (b) shows
SegSNR improvement in various f16 cockpit noise level.

In the speech recognition test, the proposed algorithm performed
better than others. The PCR and PAR using clean test set were
respectively 67% and 64%. In Fig. 4 (a), the PCR and PAR of
speech recognition are shown in white Gaussian noise. Both PCR
and PAR of the proposed algorithm were higher than those of other
algorithms. In Fig. 4 (b), the recognition result when f16 cockpit
noise was used is shown. The PCR of the proposed algorithm is
higher than that of other algorithms. The PAR improvement of the
proposed algorithm was higher than those of any other algorithms
except the M-S.

4. CONCLUSION

A novel speech enhancement algorithm based on both coexisting
deterministic and stochastic models and a psychoacoustic masking
property is proposed. When noisy speech is decomposed into de-
terministic and stochastic components, most of the noise energy ap-
pears in the stochastic component. Since the energy of the stochastic
component is generally lower than that of the deterministic com-
ponent, it is dif cult to estimate the stochastic component. In the
proposed method, a psychoacoustic masking property obtained from
the stochastic component is used to adaptively enhance the stochas-
tic component. Under various simulation conditions, the proposed
algorithm performed better than other baseline algorithms.
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Fig. 4. SS: Spectral Subtraction, WF: Wiener lter, M-S: MMSE-
STSA estimator, PA: the proposed algorithm. (a) Improvement of
recognition accuracy and correction rate in white Gaussian noise.
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