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ABSTRACT

The goals of speech enhancement are to improve its perceptual as-
pects most commonly by applying a gain function to the noisy sig-
nal coef cients in a transform domain. This gain function is nor-
mally chosen to provide a good trade-off between suppressing the
noise and avoiding speech distortion. In this paper, we identify
some desired gain characteristics for better sounding enhancement
and propose a method for choosing the gain transfer function based
on perceptual criteria. We implement our approach in the eigen-
spectral domain and compare our results with those from selected
eigenspectral-based transfer functions.

Index Terms— Eigenspectral domain speech enhance-
ment, Coloured noise, Perceptual-based gain derivation, Resid-
ual noise energy, Distortion noise energy

1. INTRODUCTION

Speech recorded in a noisy environment undergoes degrada-
tion that affects quality, in the form of an increased noise
level, and impairs intelligibility of the speech signal. The
goals of speech enhancement are to improve its perceptual as-
pects most commonly by applying a gain function to the noisy
signal coef cients in a transform domain. This gain function
is normally chosen to provide a good trade-off between sup-
pressing the noise and avoiding speech distortion [1].

Ephraim and Van Trees (EVT) [2] propose an eigenspec-
tral domain speech enhancement algorithm for speech cor-
rupted with white noise. They express the estimation error
energy as a sum of a noise-related component, called resid-
ual noise energy, and a speech-related one, called speech dis-
tortion energy, which they relate to the concepts of quality
and intelligibility respectively. They derive a gain function
by minimizing the speech distortion energy while constrain-
ing the residual noise energy to be below a certain level, giv-
ing the Time-Domain Constrained (TDC) estimator. Using
an alternative constraint in which the spectrum of the residual
noise is shaped to match that of the speech, they also derive
the Spectral-Domain Constrained (SDC) estimator.

EVT [2] suggest prewhitening the noisy signal if the noise
is not white as assumed in the TDC/SDC derivation. Mittal
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and Phamdo [3] point out that, with prewhitening, the con-
straints for the minimization are applied to the transformed
noisy signal and not the original one. Rezayee and Gazor [4]
observe that the noisy signal eigenvectors nearly diagonalize
the noise covariance matrix and so they use a diagonal ma-
trix of noise energy values. Hu and Loizou [5] simplify the
SDC minimization using a matrix that jointly diagonalizes the
noise and signal covariance matrices, an approach extended
further by Lev-Ari and Ephraim [6].

EVT [2] do not indicate how to specify the constraints on
the residual noise spectrum. Hu and Loizou [7] adapt a tech-
nique used in low-rate speech coding for allowing a higher
level of quantization noise near peaks in the power spectrum
of the speech since the noise is masked by the speech. They
de ne a perceptual lter that weighs the noise energy, with
the ltered noise used in the constraints for the SDC estima-
tor. One problem with this approach is that the perceptual l-
ter requires estimating an all pole model of the clean speech
spectrum from the noisy signal.

2. FIXED GAIN CHARACTERISTICS

In this paper, we analyse linear lters calculated over a frame
and applied to a noisy speech vector, z, within that frame
(see [8]). We assume that the noise, w, is additive and un-
correlated with the speech, y. We also assume that the noisy
signal covariance matrix eigenvectors approximately diago-
nalize the clean signal and noise covariance matrices, Ry and
Rw and that this is valid for the estimated matrices.

Rz = Ry +Rw = VΛzVT = V
(
Λ̃y + Λ̃w

)
VT (1)

Λ̃y = VTRyV ≈ diag{λ̃yi},
Λ̃w = VTRwV ≈ diag{λ̃wi

} (2)

We denote as a speech-dominated eigenvector one along which
the speech energy exceeds the noise energy as opposed to a
noise-dominated eigenvector. Enhancement is achieved by

ŷ = VGVT z G = diag{gi} gi = f(λ̃yi , λ̃wi
) (3)

where f(.) denotes some function of the eigenspectral SNR,
the ratio of the clean speech to noise energy along the ith
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eigenvector, λ̃yi/λ̃wi . As an example, the TDC gain function,
g(T ), and SDC gain function, g(S), are respectively given by

g(T ) =
λ̃y

λ̃y + μλ̃w
, μ ≥ 0 (4)

g(S) =

(
λ̃y

λ̃y + λ̃w

)γ/2

, γ ≥ 1 (5)

where μ and γ control the trade-off between residual noise
and signal distortion energy; higher values of the parameters
provide increased noise suppression but with higher distor-
tion. A sharper transition from high gain values to low ones
is achieved with the following gain function [2]

g(E) = exp
(
−νλ̃w/λ̃y

)
(6)

Like the parameter γ, ν controls the balance between dis-
tortion and residual noise. In all these gain functions, an
empirically-determined xed gain characteristic (i.e. μ, γ and
ν are xed) is applied.

Hu and Loizou [9][10] propose a variation of g(T ) in which
μ is a function of the segmental SNR, S dB, calculated over
each frame. They vary μ in (5) so that it is higher for frames
with low segmental SNR leading to higher suppression of
background noise. The rule for choosing μ is given by

μ =

⎧⎨
⎩

μ0 − S/s0 −5 < S < 20
1 S ≥ 20
5 S ≤ −5

(7)

where μ0 and s0 are experimentally determined. They show
that their approach is similar to the noise power oversubtrac-
tion proposed in [1] where the oversubtraction factor is made
to depend on segmental SNR. Although this leads to a family
of gain functions, the parameterization of the gain function is
still ad hoc.

3. ANALYSIS OF PERCEPTUAL-BASED GAIN
CHARACTERISTICS

3.1. Using a psychoacoustic model

Several authors have suggested using the properties of human
hearing to guide the selection of a gain function. Jabloun and
Champagne [11] [8] choose to work with a psychoacoustic
model to obtain the masking threshold for each frame, the en-
ergy level in the power spectral domain (PSD) below which
any sound cannot be perceived by the hearing system due to
masking by strong speech energy in that frame. The masking
threshold is estimated in the PSD by applying a psychoacous-
tic model of hearing (ISO MPEG-1) to the clean speech spec-
trum or its estimate. This involves converting the frequency
scale to the non-linear Bark scale to match the non-linear res-
olution of the auditory system and convolving with a spread-
ing function to account for interband masking.

The authors propose a Frequency-to-Eigendomain trans-
form (FET) to convert the mask from the PSD to the eigen-
domain. Having obtained the masking threshold for an eigen-
vector, λ̃m, they modify (6) to use λ̃m instead of the clean
speech energy λ̃y , thus attenuating the noise only if it exceeds
the masking threshold. They acknowldege that estimation er-
rors are likely to arise for weak energy frames, like unvoiced
fricatives, possibly leading to λ̃m exceeding λ̃y . For this rea-
son they take the minimum of the two in their expression for
gain.

g(P ) = exp

(
−ν λ̃w

min(λ̃m, λ̃y)

)
(8)

Now min(λ̃m, λ̃y) ≤ λ̃y

⇒ λ̃w

min(λ̃m,λ̃y)
≥ λ̃w

λ̃y

⇒ g(P ) ≤ g(E) from (6) and (8)
(9)

We show in (9) that the gain may be lower when the mask-
ing threshold is used. Thus for speech-dominated eigenvec-
tors, the gain introduces slightly more attenuation than previ-
ously. Also, as noted above, λm is poorly estimated for noise-
dominated eigenvectors and if λm exceeds λ̃y , g(P ) and g(E)

would be identical. As a result, the noise suppression charac-
teristics would not be better.

3.2. Problem with masking threshold in SDC derivation

To assess the weakness above, we adapt, to the eigenspec-
tral domain, Hu and Loizou’s [12] frequency-based technique
of attenuating the noise to the level of the masking thresh-
old. For each eigenvector, the gain g is calculated so that the
residual noise along an eigenvector, g2λ̃w, does not exceed
the masking threshold.

g2λ̃w ≤ λ̃m ⇒ g ≤
√
λ̃m

λ̃w
(10)

If λ̃m ≥ λ̃w then the speech already masks the noise so that a
gain of 1 is used to avoid any distortion. If λ̃m < λ̃w, attenua-

tion is needed and g =
√
λ̃m/λ̃w from (10). If we choose the

minimum of the masking threshold and clean speech energy
for the same reasons as in (8) we can express the gain as

g(M) = min

⎛
⎝1,

√
min(λ̃m, λ̃y)

λ̃w

⎞
⎠ (11)

We have implemented (11) using the FET transform on
the masking threshold in the PSD [8]. Listening tests reveal
that for white noise at 5dB the residual noise is very audible,
indeed more so than with a Wiener gain (SDC with γ=2 in
(5), i.e. g(S)

γ=2).
As reported in [8], for negative values of eigenspectral

SNR, the masking threshold may be quite close to the speech
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Fig. 1. Power spectrum of clean speech (solid line) and mask-
ing threshold (dashed line) for a strong speech frame.

energy. This can be seen, in the frequency domain, for the
higher frequencies above 5kHz in Figure 1 where the masking
threshold is shown as a dashed line. As a result, the following
approximation can be derived for such eigenvectors

√
λ̃m

λ̃w
≈
√

λ̃y

λ̃w
≈
⎛
⎝ λ̃y

λ̃w

1 + λ̃y

λ̃w

⎞
⎠

1/2

= g
(S)
γ=1 (12)

The validity of this approximation is illustrated by plotting
g(M) together with the curve for g(S)

γ=1 in Figure 2. The mask-
ing threshold-based gain values are calculated using (11) for
all eigenvectors of all frames for a speech extract corrupted
by white noise. The values approach the g(S)

γ=1 curve as eigen-
spectral SNR decreases, as we predicted. This particular curve
gives the highest residual noise for this family of curves which
explains why the noise level is quite high when using the gain
in (11). The calculation of gain value based on the masking
threshold is unsuitable because the gain expression (11) does
not achieve suf cient noise suppression for negative values of
eigenspectral SNR.

4. VARIABLE GAIN FUNCTION SELECTION

4.1. Expected energy-based approach

In this section, we develop a method for obtaining variable
gain characteristics based on the masking threshold. We choose
γ for each frame in (5) so that the energy in the frame is equal
to an unbiased estimate of the clean speech energy, calculated
for example by power spectral subtraction. We derive an ex-
pression for the expected value of the energy in a frame where
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Fig. 2. Plot of g(M) and g(S)
γ=1 v/s eigenspectral SNR

the gain used is as in (5).

trace(E(ŷŷT )) = trace(VzGVT
z E(zz

T )VzGVT
z )

= trace(VzGVT
z RzVzGVT

z )
= trace(VzGΛzGVT

z )
= trace(GΛzG)
= trace(G2Λz)

=
∑(

λ̃y

λ̃y+λ̃w

)γ
λz

(13)
We vary γ from the lowest value of 1 and select the value,
γ∗, for which (13) is closest to the unbiased estimate of the
clean speech energy. We place an upper limit of 4 on the
value of γ∗ to limit suppression, i.e. 1 ≤ γ ≤ 4. In addi-
tion, we ensure that no suppression is applied if the masking
threshold exceeds the noise energy level. We obtain λ̃m as in
section 3.2 by calculating the masking threshold from the en-
hanced speech obtained using γ∗ in (5). We decide on a gain
value of g(S)

γ∗ or 1 depending on whether our estimate for the

noise energy, λ̃w, exceeds the masking threshold, λ̃m, or not.
In choosing γ∗ as in the previous paragraph, we keep dis-

tortion for speech-dominated eigenvectors low since atten-
uation is not always applied. In addition, we improve on
the masking threshold-based approaches (section 3) for noise
suppression for noise-dominated eigenvectors since γ∗ is likely
to be much greater than 1 to decrease (13) to a desired level.

4.2. Results

In this section, we compare the performance of the three fol-
lowing schemes: the variable gain de ned in (7), the mask-
ing threshold approach described in section 3.2, and the new
technique proposed in section 4.1. Since the balance between
speech distortion energy and residual noise energy is achieved
differently in each case, we use these two energy metrics
for comparison. A speech test le is corrupted with white
noise for an input SNR of 5dB; the eigenspectral SNR values
are calculated for each eigenvector of each frame. For each
of the three schemes, we calculate the gain values from the
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Fig. 3. Noise energy metrics for 3 different techniques for
frames with (a) high values of eigenspectral SNR, i.e. speech-
dominated frames (b) low values of eigenspectral SNR, i.e.
noise-dominated frames

eigenspectral SNR values and using any other information re-
quired, for example the segmental SNR values for the variable
gain approach (7), and the masking threshold curves for the
other two schemes (sections 3.2 and 4.1). With these gain val-
ues, the distortion and residual noise energy expressions are
calculated for each frame for the three cases and are plotted
on the same scatter plots in Figure 3(a) for speech-dominated
frames and Figure 3(b) for noise-dominated frames. Note that
the axes are interchanged to have the appropriate metric on the
y-axis, e.g. speech distortion energy for speech-dominated
frames.

The desired result is to have low values of distortion en-
ergy for the speech-dominated frames and low values of resid-
ual noise energy for the noise-dominated frames. In the for-
mer case (Figure 3(a)), the cluster of points for the masking
threshold approach is the lowest followed by that for the pro-
posed technique and that for the variable gain approach, i.e.
performance decreases in that order. This is to be expected
since the rst and second approaches base their decision to
attenuate or not on the masking provided by the speech en-
ergy which is high for the speech-dominated frames. For
the noise-dominated frames (Figure 3(b)), the performance
order is reversed since the cluster of residual noise energy
points is highest for the masking threshold-based approach.
This stems from the inherent weakness of using the mask-
ing threshold in gain calculation for frames with low or no
speech energy (section 3.2). The proposed approach gives
distortion and residual noise values that lie between the two
extremes and gives a good trade-off: the distortion energy
for speech-dominated frames is kept low by exploiting the
perceived noise level while the residual noise level in weak

speech and noise-dominated frames is managed by trying to
match a frame-wide desired energy level.

5. CONCLUSION

In this paper, we indicate that previously proposed gain func-
tions for eigenspectral speech enhancement use a xed pa-
rameter value that does not take the local signal information
in consideration. Some approaches use the masking threshold
in the gain function de nition but we point out that this may
allow an excess of residual noise while unnecessarily adding
distortion energy. We propose an approach where the mask-
ing threshold is not used directly in the gain function calcu-
lation but where the parameter value is chosen so that the ac-
tual value of the enhanced speech energy is made to match
an unbiased estimate of the clean speech energy. From the
noise energy metrics, we conclude that our approach provides
a good balance based on the speech or noise energy content
along each eigenvector.
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