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Abstract: In this paper classes of globally stable dynamical
systems for dual-purpose extraction of principal and minor com-
ponents are analyzed. The proposed systems may apply to both
the standard and the generalized eigenvalue problems. Lya-
punov stability theory and LaSalle invariance principle are used
to derive invariant sets for these systems. Some of these systems
may be viewed as generalizations of known learning rules such
as Oja’s and Xu’s systems and are shown to be applied, with
some modifications, to symmetric and nonsymmetric matrices.
Numerical examples are provided to examine the convergence
behavior of the dual-purpose minor and principal component
analyzers.
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1 Introduction
Principal (PCA) and minor (MCA) component analyzers of a
symmetric matrix are matrix differential equations that con-
verge to the eigenvectors associated with the largest and smallest
eigenvalues, respectively. Similarly, principal (PSA) and minor
(MSA) subspace analyzers of a symmetric matrix are matrix dif-
ferential equations that converge to a matrix whose columns’s
span is the subspace spanned by the eigenvectors correspond-
ing to the largest and smallest eigenvalues, respectively. PCA
and MCA are useful tools in adaptive antenna arrays in signal
processing, multiuser detection in wireless communication, and
truncated model reduction tasks.

After the pioneering work of Oja [1], Sanger [2], Xu [3], Amari
[4], and others [5,6], numerous learning rules for principal com-
ponent analysis have been developed in the literature. Some of
these rules are modifications of the original PCA learning sys-
tems. As indicated in [6], the task of developing an MCA flow
is perceived as being more complicated than that for a PCA
flow. The present work shows that perhaps there are as many
MCA/MSA dynamical flows as there are PCA/PSA flows.

A common method for converting a PCA/PSA flow into an
MCA/MSA one is to change the sign of the given matrix [6], or
by using the inverse of the original matrix. However, inverting a
large matrix is a costly task, and changing the sign of the original
matrix does not always generate a stable system unless frequent
orthonormalization is employed during the numerical implemen-
tation. In this paper we propose a framework to generate classes
of stable dynamical systems that can be easily converted from
PCA flow into MCA flow and vice versa.

Throughout this paper, the following notation will be used.
The symbols IR, and IN denote the set of real numbers, and the
set of positive integers, respectively. The transpose of a real
matrix x is denoted by xT , and the derivative of x with respect

to time is written as x′. If B = [bij ] is a square matrix of size
n, then tr(B) =

∑n

1
bii denotes the trace of B, and diag(B)

is a diagonal matrix with diagonal elements b11, · · · , bnn. The
identity matrix of appropriate dimension is expressed with the
symbol I. Also, the derivative of V (x) with respect to time
along a trajectory x′ = f(x) is denoted by V̇ . Finally, it will
be assumed that the matrix A has distinct eigenvalues unless
otherwise stated.

2 Mathematical Preliminaries
In this section, we introduce several known results from Lya-
punov stability theory of dynamical systems. Let g(x) :
IRn×p → IRn×p, p ≤ n, be continuously differentiable function
and consider the dynamical system

x′ = g(x). (1)

A set S ∈ IRn×p is an invariant set for the system (1) if every
trajectory x(t) which starts from a point in S remains in S for
all time. For example, any equilibrium point is an invariant
set. The domain of attraction of an equilibrium point is also an
invariant set.

We state next a few stability results for nonlinear au-
tonomous systems. The invariant set theorems reflect the in-
tuition that the decrease of a Liapunov function V has to grad-
ually vanish. In other words V̇ has to converge to zero because
V is lower bounded. Proofs of the results below can be found in
[7].

Theorem 1 (Local Invariant Set Theorem) [7]. Consider
the autonomous system (1) with g continuous and let V (x) :
IRn → IR be a scalar function with continuous first partial deriv-
atives. Assume that

1. for some l > 0, the set Ωl defined by V (x) ≤ l is bounded.

2. V ′(x) ≤ 0 for all x in Ωl.

Let R be the set of all points within Ωl where V ′(x) = 0 and
M be the largest invariant set in R. Then, every solution x(t)
originating in Ωl tends to M as t →∞.

In Theorem 1, the word largest means that M is the union
of all invariant sets within R. Notice that R is not necessarily
connected, nor is the set M .

We state next a well known result about Lagrange stability.

Theorem 2 (A Lagrange Stability Theorem) [7]. Let W
be a bounded neighborhood of the origin and let W c be its com-
plement (W c is the set of all points outside W ). Assume that
V (x) is a scalar function with continuous first partial derivatives
in W c and satisfying:

1. V (x) > 0 for all x ∈ W c,

2. V̇ (x) ≤ 0 for all x ∈ W c,

3. V (x) →∞ as ||x|| → ∞.

Then each solution of (1) is bounded for all t > 0.
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3 Dual-Purpose Systems
We develop here a number of dynamical systems that can be
converted between PCA/PSA rules and MCA/MSA rules. To
prove stability for the original and the converted systems, the
following theorem is needed. It examines the trace of a product
of symmetric and anti-symmetric matrics.

Proposition 3. Let P, S ∈ IRn×n be symmetric and antisym-
metric matrices, respectively. Then tr(PS) = 0.

Proof. Let P = [pij] and S = [sij], then

tr(PS) =

n∑

i=1

n∑

k=1

pikski.

Since sll = 0, l = 1, · · ·n, pik = pki, and ski = −sik it follows
that

tr(PS) =

n∑

l

pllsll +

n−1∑

k=1

n∑

i=k+1

{pikski + pkisik}

=

n∑

l

pllsll +

n−1∑

k=1

n∑

i=k+1

{pikski − pikski} = 0.

3.1 MSA/PSA Dynamical Systems
In this section, dynamical systems for implementing dual-
purpose MCA/MSA and PCA/PSA algorithms are developed.
Let Ω1 be the set Ω1 = {x : xT x is positive definite}. In what
follows, it will be assumed that the initial condition x0 for dy-
namical systems satisfies x0 = x(0) ∈ Ω1. The derivation of
these systems are motivated by the idea that the Rayleigh quo-
tient tr{(xT Ax)(xT x)−1} is bounded over the set Ω1 regardless
of whether A is positive definite or not. Additionally, it re-
mains bounded even if A is replaced with −A. Similarly, the
inverse Rayleigh quotient tr{(xT x)(xT Ax)−1} is bounded over
the set Ω2 = {x : xT Ax is positive definite} provided that A is
positive or negative definite. To examine the critical points of
the Rayleigh quotient and the inverse Rayleigh quotient for the
simple case where x ∈ IRn×1, let A be symmetric and x is one
dimensional. One can show that the right hand side of each of
the systems

x′ = xxT Ax− AxxT x, (2a)

x′ = AxxT x− xxT Ax, (2b)

appears in the numerator of the gradient of the Rayleigh and
the inverse Rayleigh quotients. Specifically, the system (2a) can
be expressed as

x′ = ∇x(
xT x

xT Ax
)(xT Ax)2, (3)

while the system (2b) can be written as

x′ = −∇x(
xT Ax

xT x
)(xT x)2. (4)

This shows that xxT Ax − AxxT x = ∇x( xT x
xT Ax

)(xT Ax)2 =

−∇x(xT Ax
xT x

)(xT x)2. Thus both systems (2a) and (2b) are

gradient-like systems since (xT Ax)2 and (xT x)2 are positive
definite if x ∈ Ω1 and A is positive definite.

To understand the behavior of the Rayleigh quotient along

the trajectory of (2a) and (2b) let f(x) = xT Ax
xT x

, AT = A,

then ḟ = ∇x(f(x))T x′ = −∇x(f(x))T∇x(f(x))(xT Ax)2 ≤ 0.
Consequently, f(x(t)) is decreasing function for t ≥ 0 and
since it is bounded below, limt→∞ f(x(t)) exists. Also note
that V (x) = xT x remains constant along the trajectory of
the system (2a), while the function V = xT Ax is decreas-
ing since V̇ = (xT Ax)2 − xT A2xxT x ≤ 0. This implies that
xT (t)Ax(t) ≤ xT

0 Ax0 and x(t)T x(t) = xT
0 x0 for t ≥ 0.

From the previous discussion, we state the following theorem.

Theorem 4. The systems (2a) and (2b) are stable and if x(t)
is a solution of either systems for t ≥ 0, then x(t)T x(t) =
x(0)T x(0) for each t ≥ 0.

The next result provides several generalizations of the sys-
tems (2a) and (2b).

Theorem 5. Consider the dynamical systems

x′ = xK(x)−AxxT x, (5a)

x′ = AxxT x− xK(x), (5b)

where K(x) : IRn×p → IRp×p, p ≤ n is a continuously differen-
tiable function. If K +KT = xT Ax+xT AT x+α(I−xT x)B(x),
where α ≥ 0 and B(x)+B(x)T is positive definite, then the sys-
tems (5a) and (5b) are stable.

Outline of Proof: By considering a Liapunov function of the
form V (x) = 1

4
tr((xT x − I)2), it can be shown that the time

derivative of V along the trajectory x(t) of the system (5a) is

V̇ = tr{(xT x− I)(KT − xT Ax)xT x

=
1

2
tr{(xT x− I)(KT + K − xT Ax− xT AT x)xT x}

=
−α

4
tr{(xT x− I)2(B(x) + B(x)T )} ≤ 0.

Since V (x) → ∞ as ||x|| → ∞, Theorem 1 guarantees that the
system (5a) is stable. Similarly the system (5b) is stable.

Remark 1: It is interesting to note that Systems (2a), (2b),
(5a), (5b) are stable for any matrix A. By carefully examining
the proofs of Theorem 4 and 5, one can also show that the
systems

x′ = xxT AT x− AxxT x, (2a)′

x′ = AxxT x− xxT AT x, (2b)′

are stable. This means that the systems (2a), (2a)’, (2b), and
(2b)’ converge to the minor or the principal subspaces for any
matrix A having distinct eigenvalues.

Special Cases: Based on the above theorem, several vari-
ations of System (2a) and (2b) may be derived. For example,
assume that in Theorem 5 we set K−xT Ax = αB(x)(I−xT x),
where B(x) + B(x)T is positive definite, and α ≥ 0. Then Sys-
tem (5a) simplifies to

x′ = xxT Ax− AxxT x− αxB(x)(xT x− I). (6a)

Similarly, System (5b) simplifies to

x′ = AxxT x− xxT Ax− αxB(x)(xT x− I). (6b)

In particular, when B(x) = I, then the following MSA/PSA
systems are resulted:

x′ = xxT Ax−AxxT x− αx(xT x− I), (7a)

x′ = AxxT x− xxT Ax− αx(xT x− I). (7b)

When A is symmetric, other variations follow by incorporat-
ing the term −αAkx(xT x− I) into Systems (2a) and (2b):

x′ = ±{xxT Ax− AxxT x} − αAkx(xT x− I), (8)

where k is any integer and α ≥ 0. Here, the choices of the + and
− signs yield MSA and PSA systems, respectively. The systems
described in (8) can be shown to converge provided that Ak is
positive definite and x(0) ∈ Ω1. It is interesting to note that if
the + sign is chosen and α = k = 1, we obtain

x′ = Ax− xxT Ax (9)

which is one form of Oja’s subspace system. When k = 1 and
α = 1, the system (8) with the + sign reduces to

x′ = xxT Ax−Ax(2xT x− I). (10)

This MSA system is known in the literature and is analyzed in
[10].
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3.1.1 Conversion to MCA/PCA Systems
To convert MSA/PSA systems into MCA/PCA learning rules,
we may incorporate a diagonal matrix D in the above systems.
For example if in Systems (8) we replace I with D, the following
systems are obtained.

x′ = ±{xxT Ax−AxxT x} − αAkx(xT x−D). (11)

If k = 1 and α = 1, the two systems in (11) simplify to

x′ = AxD − xxT Ax, (12a)

x′ = xxT Ax−Ax(2xT x−D). (12b)

The system (12a) is sometimes called Xu’s weighted PCA rule
[3]. Also the system (12b) is an MCA version of the minor
subspace system (10).

Remark 2. From the previous discussion, it seems that each of
the dual-purpose learning differential equation derived so far can
be expressed as x′ = xf(x, A, D) − Axg(x, A, D) + h(x, A, D),
where D is a diagonal matrix, and f, g and h are chosen so
that the function V (x) = 1

2
trace(xT x)) has zero time deriv-

ative along the trajectory of the differential equation x′ =
xf(x, A, D)−Axg(x, A, D) and V̇ is negative semidefinite along
the trajectory of the differential equation x′ = h(x, A, D). Thus
the dynamical system x′ = −xf(x, A, D) + Axg(x, A, D) +
h(x, A, D) is also stable and may converge to PSA/PCA. For
simplicity of implementation h(x, A, D) is normally chosen as
αAkx(xT x −D) for k = 0, 1. Many other expressions are con-
sidered in the next sections.

3.2 Other Dual PCA/MCA Systems
We now use logarithmic cost functions to derive learning rules
that can be used as a PCA/PSA and MCA/MSA dynamical
systems by merely switching a sign. Other MCA/PCA learning
rules based on logarithmic cost functions are derived in [8,9].
Let f(x) = ±1

2
{trace(log(xT Ax)) − 1

2
trace(log(xT x))}, where

A is positive definite and x ∈ Ω1. Then the gradient of f is
∇f(x) = ±{Ax(xT Ax)−1 − x(xT x)−1}. Thus we obtain the
following gradient systems:

x′ = Ax(xT Ax)−1 − x(xT x)−1, (13a)

which is a PSA learning rule, and

x′ = x(xT x)−1 − Ax(xT Ax)−1, (13b)

which is an MSA learning rule.
We note that if V (x) = 1

2
tr(xT x), then V̇ = 0 along any

trajectory of the systems (13a)-(13b). Consequently, V (x(t)) =
V (x(0)) for each t ≥ 0, or equivalently, x(t)T x(t) = xT

0 x0. Al-
though these two dynamical systems are self-normalized, with
normalization depending on the initial condition, the main draw-
back is that only principal or minor subspaces can be obtained.
Numerical simulations have shown that MCA/PCA systems will
result if a positive definite diagonal matrix D having distinct
eigenvalues is incorporated so that:

x′ = AxD(xT Ax)−1 − xD(xT x)−1, (14a)

x′ = xD(xT x)−1 − AxD(xT Ax)−1. (14b)

By considering the Liapunov function V (x) = 1
2
tr(xT x), it fol-

lows that the time derivative is V̇ = 0 along any trajectory of
the systems (14a) and (14b). This implies that (14a) and (14b)
are globally stable over the set Ω1.

To examine the behavior of the limiting solutions, let
P = limt→∞ x(t)T x(t) and B = limt→∞ x(t)T Ax(t). Then
PDP−1 = BDB−1 or DP−1B = P−1BD. Therefore, P−1B is
diagonal (see Proposition 6 [8]). Now assume that P−1B = D1

then B = PD1 = D1P . The second equality follows since P and
B are symmetric. The eigenvalues of P−1B are eigenvalues of

A. Thus the diagonal elements of D1 are distinct. This implies
that P = D2 for some diagonal matrix D2 (see Proposition 6
[8]). Now B = PD1 = D1D2 is diagonal.

Motivated by the systems (14a) and (14b), the systems (2a)
and (2b) are modified analogously by inserting a diagonal matrix
D so that

x′ = xDxT Ax−AxDxT x, (15a)

x′ = AxDxT x− xDxT Ax. (15b)

After numerous simulations, it should be pointed out that (15a)
and (15b) do not represent MCA or PCA learning rules. They
only converge to minor and principal subspaces, respectively.

However, to convert the systems (15a)-(15b) into MCA/PCA
systems, one may add a penalty term such as −α x(xT x−D),
where α > 0, so that the modified systems are

x′ = xDxT Ax− AxDxT x− αx(xT x−D), (16)

x′ = AxDxT x− xDxT Ax− αx(xT x−D). (17)

Simulations have shown that these systems have very good
convergence behavior to MCA and PCA. To show that the-
oretically, assume that A is positive definite and D is posi-
tive definite diagonal matrices of appropriate dimensions. Let
P = limt→∞ x(t)T x(t) and B = limt→∞ x(t)T Ax(t). Then
Equation (16) implies that PDB = BDP − αP (P − D) or
PDB − BDP = −αP (P − D). Taking the transpose of both
sides yields BDP − PDB = −α(P −D)P . By adding the last
two equation we obtain (P −D)P + P (P −D) = 0. Since P is
positive definite, it follows that P = D. Hence D2B = BD2.
Since all eigenvalues of D2 are distinct, it follows that B = D1

for some diagonal matrix D1 (see Proposition 6 [8]). This shows
that both limt→∞ x(t)T x(t) and limt→∞ x(t)T Ax(t) are diago-
nal. Analogous proof holds for the system (17).

Similar analysis shows that each of the systems

x′ = xxT Ax− AxxT x− αx(xT x−D), (18a)

x′ = xxT x− AxxT Ax− αx(xT x− ddiag(xT x)), (18b)

converges to minor components while each of the systems

x′ = AxxT x− xxT Ax− αx(xT x−D), (18c)

x′ = AxxT x− xxT Ax− αx(xT x− ddiag(xT x)), (18d)

converges to principal components. Clearly, Systems (18a)-
(18d) are modifications of those of (2a) and (2b).

By adding different penalty terms, many other dual-purpose
MCA/PCA learning systems may be obtained:

x′ = ±(xxT Ax−AxxT x)− αx(xT x)−1(xT x−D), (19a)

x′ = ±(xxT Ax−AxxT x)− αx(xT Ax−D), (19b)

x′ = ±(xxT Ax− AxxT x)− αAx(xT x−D), (19c)

x′ = ±(xxT Ax− AxxT x)− αAx(xT Ax−D), (19d)

x′ = ±(xxT Ax−AxxT x)−αAx(xT Ax)−1(xT Ax−D), (19e)

where α > 0. Stability analysis can be established for these
systems based on Proposition 3, Theorems 1 and 2.

4 Generalized Eigenvalue Problem

The PCA/PSA and MCA/MSA learning differential equations
of the previous sections may be modified to obtain PCA/PSA
and MCA/MSA learning differential equations for the general-
ized eigenvalue problem involving two matrices A and B where
B is positive definite and AT = A. Thus we consider the fol-
lowing systems:

x′ = ±(AxxT Bx−BxxT Ax)− αx(xT Bx−D)m, (20a)

x′ = ±(AxxT Bx− BxxT Ax)− αAx(xT Bx−D)m, (20b)
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x′ = ±(AxxT Bx− BxxT Ax)− αBx(xT Bx−D)m, (20c)

x′ = ±(B−1AxxT Bx− xxT Ax)− αx(xT Bx−D)m. (20d)

Here x ∈ IRn×p, D is positive definite diagonal matrix, α ≥ 0,
and m ≥ 0 is an integer.

In what follows we show that System (20a) is stable. The
stability of other systems (20b)-(20d) may be established sim-
ilarly. Let s ∈ IN so that s − 1 + m is even and consider
V (x) = 1

2s
tr((xT Bx − D)s), where D is a diagonal matrix.

Now System (20a) is stable if the following system

x′ = ±(B−1AxxT Bx−xxT Ax)−αB−1x(xT Bx−D)m. (20e)

is stable. The time derivative of V along the trajectory x(t) of
(20e) is

V̇ = −αtr{(xT Bx−D)s−1{xT AxxT Bx

− xT BxxT Ax− αxT Bx(xT Bx−D)m}
= −αtr{(xT Bx−D)s−1xT x(xT Bx−D)m} ≤ 0

provided that B is positive definite and s− 1 + m is even.

5 Simulations
Analytical solutions of most of the proposed dynamical systems
are not available. Thus simulation offers a way to gain insight in
the behavior of these systems. In this simulation, a matrix A =
UΣUT of size n = 6 is generated so that Σ is a diagonal matrix
with eigenvalues 1, 2, 3, 4, 5, 6. The matrix U is orthogonal and
is generated randomly using the Matlab function qr applied to a
random matrix. The MCA system (11), with the + sign, is used
to compute the 4-dimentional minor components of the matrix
A.

Figure 1:This plot shows the error e(k) = ||off(xT Ax)||2 +
||off(xT x)||2 for 22000 iterations repeated 100 times using dif-
ferent initial conditions. Note that e(k) eventually diminished
indicating that both xT Ax and xT x are nearly diagonal.

The initial condition x0 is chosen randomly using the
Matlab function rand, α = 20, and the matrix D =
diag{0.8744, 0.0150, 0.7680, 0.9708}. The plots shown in the fig-
ure are obtaind by solving (11) 100 times each with 22000 it-
erations and using the same stepsize ε = 0.0048 and the same

diagonal matrix D. Convergence is measured by the euclid-
ean norm of the off-diagonal elements of xT Ax and xT x, i.e.,
e(k) = ||off(xT Ax)||2 + ||off(xT x)||2, where ||C||2 denotes the
euclidean norm of C and off(C) denotes the matrix off(C) =
C − diag(C). In another similar simulation, it is shown (using
the Matlab long fromat) that the smallest four eigenvalues of A
which are approximated by the eigenvalues of xT Ax(xT x)−1

are{1.00000000000000, 2.00000000000000, 3.00000000000000,
4.00148086934653}.

6 Conclusions
We have proposed a number of dual-purpose learning rules for
extracting principle and minor components of general matrices.
In these rules, switching a learning rule from being a PCA or-
dinary differential equation (ODE) to being an MCA ODE is
achieved by merely multiplying few terms of the learning rule
by -1. It was shown that the proposed ODEs include some ex-
isting dual-purpose rules as special cases. Additionally, we have
shown that a penalty term can be added so that the resulting
systems are globally asymptotically stable. Many simulation re-
sults which are not reported here due to space limitation have
indicated very good agreement with the theoretical results. A
comprehensive analysis of many learning rules stated in Equa-
tions (18a)-(18d), (19a)-(19e), and (20a)-(20e), will be detailed
in a forthcoming paper.
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