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ABSTRACT 

 

In this paper, a three-stage error concealment (EC) framework 
based on the recently proposed Histogram-based Quantization (HQ) 
for Distributed Speech Recognition (DSR) is proposed, in which 
noisy input speech is assumed and both the transmission errors and 
environmental noise are considered jointly. The first stage detects 
the erroneous feature parameters at both the frame and subvector 
levels. The second stage then reconstructs the detected erroneous 
subvectors by MAP estimation, considering the prior speech source 
statistics, the channel transition probability, and the reliability of 
the received subvectors. The third stage then considers the 
uncertainty of the estimated vectors during Viterbi decoding. At 
each stage, the error concealment (EC) techniques properly exploit 
the inherent robust nature of Histogram-based Quantization (HQ). 
Extensive experiments with AURORA 2.0 testing environment and 
GPRS simulation indicated the proposed framework is able to offer 
significantly improved performance against a wide variety of 
environmental noise and transmission error conditions. 
 
Index Terms—Speech recognition, vector quantization, robustness, 
error compensation 
 
 

1. INTRODUCTION 
 

 
The client-server framework for Distributed Speech Recognition 
(DSR) has been widely considered, in which speech features are 
extracted and compressed in the hand-held clients and the 
recognition performed at the server. However, the wireless 
networks naturally introduce transmission errors so that not all 
feature vectors are correctly delivered to the server, and the 
recognition performance is thus severely degraded.  

Various error concealment (EC) techniques have been proposed 
in recent years in order to make DSR systems more robust against 
the transmission errors. They can be categorized into three groups: 
to reduce the transmission error rate through error detection and 
correction [1], to reconstruct the feature vectors by estimating the 
erroneous subvectors [2], and to consider the reliability of the 
estimated vectors at the decoding stage [3].  These methods are all 
very useful when the input speech is clean. But the inevitable 
environmental noise added to the speech entered to the clients and 
the transmission errors actually jointly disturb the received feature 
parameters in real applications. When the input speech is clean, it 
is possible to make up for the partial transmission errors because 
there are still enough correctly received feature parameters. This 
does not remain true if the input speech is already corrupted by 
environmental noise. In addition, the continuity nature or the prior 
statistical information of speech signals, useful in error detection 
with data consistency [4] or lost vectors estimation [2] may not 
remain useful when the input speech is noisy. This is why EC 
problems for noisy input speech are much more difficult.  

In this paper, a three-stage EC framework based on the recently 
proposed Histogram-based Quantization (HQ) [5,6] is proposed, in 
which both the transmission errors and environmental noise are 
jointly considered. The first stage detects the erroneous subvectors 
based on the robust nature of Histogram-based Quantization (HQ) 
partition cells. The second stage reconstructs the erroneous 
subvectors using both the prior speech source statistics and the 
robust nature of HQ partition cells. The third stage then considers 
the uncertainty of the estimated subvectors during Viterbi decoding. 
At each stage, the robust nature of HQ is well exploited [5,6], and 
many problems mentioned above can be properly handled. All 
these advantages were verified by extensive experiments. 

    
2. HISTOGRAM-BASED QUANTIZATION (HQ) 

 
2.1 Basic formulation of HQ  
 
The concept of HQ is to perform the quantization of a feature 
parameter xt at time t based on the histogram or order statistics of 
that feature parameter within a moving segment of the most recent 
past T samples, 1 1[ , . . . , , ]t T t tx x x+ Xt,T, up to the time t being 
considered [5,6]. As shown in Figure 1, the values of these T 
parameters in Xt,T are sorted to produce a time-varying cumulative 
distribution function C(y), or histogram, where C(y0)=b0=0 and 
C(yN)=bN=1, y0 and yN are respectively the minimum and 
maximum values within Xt,T.  The N quantization levels {Di = [bi-1, 
bi], i=1,2, ,N} together with their corresponding representative 
values { iz , i=1,2, ,N} defined on the vertical scale [0,1] are 
derived using the cumulative distribution C0(y) of a standard 
Gaussian N(0,1) via the Lloyd-Max algorithm. The quantization 
levels, {Di, i=1,2, ,N} are then respectively transformed to the 
range of  the feature parameter on the horizontal scale, [y0, yN], by 
the histogram C(y) constructed with Xt,T, to be the N partition cells 
{[yi-1, yi], i=1,2, ,N} for the quantization of xt, where C(yi)= bi. 
So, the partition cell [yi-1, yi] on the horizontal scale is dynamic 
which is transformed from Di by the time-varying histogram C(y). 
However the representative values {zi, i=1,2, ,N} for these 
partition cells on the horizontal scale are actually fixed, which is 
transformed from { iz , i=1,2, , N} on the vertical scale by the 
standard histogram C0(y). In other words, HQ is based on a hidden 
codebook {(Di, iz ), i=1,2, ,N} on the vertical scale, which are 
then transformed by a dynamic histogram C(y) into time varying 
partition cells [yi-1, yi] and by a fixed standard histogram C0(y) into 
the fixed representative values zi on the horizontal scale. The 
quantization here is then simply mapping the present parameter xt  
to a representative value zi for the partition cell [yi-1 , yi], 
 
 

t i i-1 t i

i-1 t i

  z  ,  if   b  < C(x ) < b , 
                  or   y  <    x    < y , i=1, 2, ..., N .
x           (1) 
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Figure 1. Histogram-based Quantization (HQ) [6] 
 

2.2 Robust nature of HQ 
 

HQ proposed here automatically integrates two different purposes: 
data compression and noise robustness, as explained below. For 
conventional Split Vector Quantization (SVQ) in ETSI DSR 
standard [7], the fixed VQ codebook may not be matched to the 
distribution of the time-varying testing data. This mismatch 
inevitably increases the quantization distortion. For the proposed 
HQ, the actual decision boundaries are dynamically adjusted 
according to the local statistics. For example, as shown in Figure 1, 
C(y) may be changed to C’(y’) with the noise disturbances. The 
partition cell for the quantization level Di=[bi-1, bi] for the 
disturbed parameter x’t may also be changed to [y’i-1, y’i], where 
C’(y’i-1) = bi-1, C’(y’i)= bi, and they can be quite different from [yi-1, 
yi]. But the quantization level Di and the corresponding 
representative value zi for the disturbed parameter x’t may remain 
unchanged as long as y’i-1 < x’t < y’i, since Di is fixed on the vertical 
scale, and zi is fixed on the horizontal scale.  In other words, the 
quantization is based on the quantization levels Di on the vertical 
scale and the histogram C(y), therefore less sensitive to the 
disturbances on the horizontal scale, or the disturbances on the 
horizontal scale is “absorbed” by the quantization levels Di on the 
vertical scale and the dynamic histogram C(y). HQ was verified to 
be able to handle various noisy conditions including non-stationary 
noisy environments [5,6]. The Histogram Equalization (HEQ) has 
been proposed and popularly used to equalize the cumulative 
distributions (or histograms) of both the training and testing feature 
parameters, and shown to produce very robust features for 
recognition [8,9,10]. The HEQ can be viewed as the limiting case 
of HQ proposed here when the number of the HQ quantization 
levels becomes infinite. But the quantization level Di of HQ here 
does bring extra robustness as explained above, which has been 
verified experimentally [5].  
 

3 THREE-STAGE ERROR CONCEALMENT (EC) 
 

3.1 Error detection 
 

In the ETSI DSR standards [7], every two quantized frames are 
grouped together and protected with 4-bit cyclic redundancy check 
(CRC). In this way, the entire frame-pair is labeled erroneous even 
if only a single bit error occurs in the frame-pair packet. A more 
efficient way is to make use of the feature characteristics at the 
subvector level for error detection. The data consistency test 
checks the continuity of the parameters in two neighboring 
subvectors [4]. When the difference between two consecutive 
values of a feature parameter in a subvector exceeds a pre-
determined threshold, the subvector is classified as inconsistent. 
The thresholds are obtained from the statistics of the training 
corpus. If the statistics of the test data were time-varying and 
different from those of the training corpus, this approach becomes 
less reliable. With environmental noise, the parameters are likely to 
be classified as inconsistent even if they are correctly received.  

 
Figure 2. The comparison of error detection (a) Recall (b) 
Precision for the previously proposed data-consistency and the 
HQ-consistency proposed here 
 

The consistency test in the HQ framework proposed here is as 
follows. For a two-dimensional HQ, ( 1 )

,t n
r and ( 2 )

,t n
r are the two 

parameters in the n-th subvector of the present received frame at 
time t, respectively with histograms 1 1( )C r  and 2 2( )C r for the 
progressively moving segment of past T values, 0 [ , ]C • •  is the two-
dimensional histogram for a standard Gaussian, and HQ( ( 1 )

,t n
r , 

( 2 )

,t n
r ) 

represents the partition cell for the subvector ( ( 1 )

,t n
r , 

( 2 )

,t n
r ) assigned 

by HQ. The subvector (
( 1 )

,t n
r , 

( 2 )

,t n
r )  is classified as consistent if  

 

1 (1) (2) (1) (2)
0 1 , 2 , , ,( [ ( ), ( )]) ( , ).t n t n t n t nHQ C C r C r HQ r r− =                                  (2) 

 

In other words, if these two parameters are correctly received, the 
order-statistics for them should be similar to the order-statistics for 
the original values before quantization and therefore similarly 
quantized into the same HQ partition cell. 
  We compared the error detection ability of the data consistency 
check [4] and the HQ-consistency check proposed above under 
different SNR values for the AURORA 2.0 testing environment 
[11]. The recall and precision rates are shown in Figure 2(a) and 
(b). For lower SNR cases, the noise apparently seriously affects the 
data consistency as verified by the precision degradation in Figure 
2(b) (from 66% down to 12% at 0 dB). With the proposed HQ-
consistency approach, the precision is much more stable at all SNR 
values, and both the recall and precision are consistently higher.  
 
 3.2 Estimation of erroneous feature vectors 
 

The erroneous subvector estimation under the HQ framework is 
based on the MAP criterion, which estimates the erroneous n-th 
subvector at time t, ,

ˆ
t nS , conditioned on the present and previously 

received n-th subvectors ,t nR  and , 1t nR − , using the prior source 
information (estimated from the clean speech) , 1,( ( ) | )t n t nP S i R − ,and the 
channel transition probability , ,( | ( ))t n t nP R S i ,  

,

,

, , , 1,
( )

, 1, , ,
( )

ˆ arg max{ ( ( ) | , )}

arg max{ ( ( ) | ) ( | ( ))},
t n

t n

t n t n t n t n
S i

t n t n t n t n
S i

S P S i R R

P S i R P R S i

−

−

=

≈

(3) 

where , ( )t nS i is the i-th HQ codeword for the n-th transmitted 
subvector at time t, ,t nS , and the maximization is over all possible 
codewords. In order to rely more on the prior source 
information , 1,( ( ) | )t n t nP S i R −  than the channel transition probability 

, ,( | ( ))t n t nP R S i in equation (3) when the channel condition is less 
reliable, the channel transition probability in equation (3) is 
calculated according to the estimated bit error rate (BER) of the 
current frame 

, ,
, ,

, , ( ( ), )( ( ), )( | ( )) *(1- ) ,t n t n
t n t n

t n t n M d S i Rd S i RP R S i BER BER −= (4) 

where M is the number of bits in the received subvector ,t nR , 
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( , )d • • represents the Hamming distance between two symbols, and 
BER is the number of inconsistent subvectors over the total bits 
within a frame (The approximation is reasonable because in our 
simulation the number of bit errors is mostly 1 in an erroneous 
symbol). Note that the BER value is estimated for each frame and 
the same BER is used for all the subvectors in the frame. The 
estimated BER is always below 0.5, so equation (4) made 

, ,( | ( ))t n t nP R S i more uniformly distributed for all possible codewords 
, ( )t nS i (i.e. difference in , ,( | ( ))t n t nP R S i  is smaller for different 

Hamming distance d) when ,t nR  is less reliable (larger BER), and 
significantly differentiated when ,t nR  is more reliable (smaller BER).  

The basic idea here is to exploit the correlation between 
consecutive frames in speech signals to estimate the lost subvectors. 
Therefore a relatively robust quantization process such as HQ is 
very helpful, because with a less robust quantization process, the 
environmental noise may move the feature vectors to a different 
partition cell and the subvector transition relationship in speech 
signals may be disturbed. Table 1 lists the entropy measure 
obtained from the conditional probabilities, , 1,( | )t n t nH S S − , for the 
symbols obtained from the SVQ approach [7] and the HQ 
approach proposed here for the AURORA 2.0 [11]. It can be found 
that this entropy measure is almost always lower for HQ, which 
means with HQ the estimate of lost subvectors can be made better.  
 
3.3 Compensation in Viterbi decoding  
 

The distribution of the posterior probability , , 1,( ( ) | , )t n t n t nP S i R R −  in 
equation (3) characterizes the uncertainty of the estimated features. 
If this distribution is assumed to be Gaussian, the uncertainty 
decoding of the estimated features can be easily performed within 
the HQ framework by increasing the variance of each Gaussian 
mixture in the HMM as proposed and verified to be useful 
previously [6]. 
 
3.4 Three-stage EC under the HQ framework 
 
The three stages of EC presented above can be easily integrated. In 
the first stage, the received frame-pairs are first checked with CRC 
to detect errors at the frame level. The erroneous frame-pairs are 
then further checked at the subvector level by the HQ consistency 
test as mentioned in section 3.1. In the second stage, the erroneous 
subvectors detected at the first stage are estimated and 
reconstructed as presented in section 3.2. This estimation is 
conditioned on the estimated BER of the received frames. In the 
third stage, uncertainty decoding in the Viterbi search process 
makes the HMMs less discriminative for subvectors with higher 
uncertainty. 
 

4 EXPERIMENTAL CONDITIONS 
 
The experiments reported here were performed on the AURORA 
2.0 testing environment [11]. To evaluate the robustness against 
mismatched conditions, the clean-speech training condition were 
tested with testing sets A, B and C for SNR ranging from 20dB to 
0 dB. The MFCC extraction uses the WI007 front-end. 

General Packet Radio Service (GPRS) was chosen as an 
example   for   the   wireless   channels   in   the   experiments, which   was 
developed by ETSI to enhance the GSM system based on the 
packet switching framework. It includes four different error control 
coding schemes, CS1~CS4, each with a different code rate. The 
GPRS simulation software used here was developed by the 
Wireless-Communication-Lab  of  National  Taiwan  University, in  

, 1,( | )t n t nH S S − c1,c2 c3,c4 c5,c6 c7,c8 c9,c10 c11,c12 logE
SVQ 4.32 4.57 4.58 4.61 4.55 4.49 1.85 
HQ 3.39 3.87 4.23 4.42 4.47 4.51 1.31 
Table 1. Conditional entropy of SVQ and the proposed HQ 
 

 
Figure 3. Comparison of SVQ, HEQ-SVQ and HQ, without and 
with GPRS transmission errors  (SVQg, HEQ-SVQg, HQg), 
averaged over all types of noise, but separated for each SNR value. 
 

 
Figure 4. Comparison of SVQ, HEQ-SVQ and HQ with the 
percentage of words which were correctly recognized if without 
transmission errors, but incorrectly recognized after transmission. 
 
which all complicated transmission phenomena have been carefully 
taken care of, such as the propagation model, the multi-path fading, 
the Doppler spread, etc. The experimental results presented below 
are based on the following simulation configurations: typical urban 
(TU, an environment with more severe fading), transmission SNR 
of 10 dB, client traveling with speed of 0/3/50/100/250 km/hr, 
single antenna, hard decision at the receiver, and CS4 coding 
scheme (i.e., without any protection). 

 
5 EXPERIMENTAL RESULTS 

 
We first compared the robustness of SVQ in ETSI standard and 
HQ proposed here against environmental noise and transmission 
errors (at speed 0 km/hr). Figure 3 shows the averaged results over 
all different types of noise but separated for different SNR values. 
The results for the standard SVQ (4.4kbps), SVQ compensated by 
HEQ (HEQ-SVQ) and HQ (3.9kbps) are the first three bars, and 
the next three bars are those with GPRS transmission errors (SVQg, 
HEQ-SVQg, HQg). For SVQ, the performance degradation with 
GPRS is larger when SNR is lower even with HEQ (2nd bar 
compared to 4-th bar, e.g. 99% to 87% for clean data, 92% to 76% 
for 15dB SNR, and 86% to 69% for 10dB SNR). Apparently, 
features corrupted by noise are more sensitive to transmission 
errors. The improvements HQ offered over HEQ-SVQ are 
consistent at all SNR values with transmission errors (6-th bar to 5-
th bar) or without transmission errors (3rd bar to 2nd bar), and 
especially significant with transmission errors. For example, in the 
case of 10dB SNR with GPRS, HQ offered an accuracy of 77% 
while the number was 35% and 69% for SVQ and HEQ-SVQ. This 
verified that HQ is robust against both environmental noise and 
transmission errors. 

To analyze the degradation of recognition accuracy caused by 
the transmission errors, we examine the percentage of words which 
were correctly recognized if without transmission errors, but 
incorrectly  recognized  after  transmission.  The  comparisons  of  this  
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Figure 5. Comparison of SVQ, HEQ-SVQ without and with 
repetition (HEQ-SVQgr), HQ without and with EC techniques 
(HQgc): (a) averaged over all SNR values, but separated for 
different noise types in sets A, B, C, and (b) averaged over all 
types of noise, but separated for each SNR value.  
 

 

Figure 6. Comparison of HEQ-SVQ without and with repetition, 
HQ without and with EC, all with GPRS at travel speeds 
0/3/50/100/250 km/hr: (a1)/(a2) for car/babble noise at 15 dB SNR, 
and (b1)/(b2) for car/babble noise at 5 dB SNR. 
 

percentage for SVQ, HEQ-SVQ and HQ under different input 
speech SNR conditions with exactly the same GPRS condition as 
mentioned above are shown in Figure 4. The rapid increase of this 
percentage for SVQ indicated that the noise corrupted SVQ 
symbols were very sensitive to the transmission errors. HEQ-SVQ 
was much better, while HQ was the best in all cases.    

Figure 5 shows the results for GPRS at speed 0km/hr, where the 
five bars in order in each set are respectively SVQ, HEQ-SVQ, 
HEQ-SVQ with repetition (HEQ-SVQgr, the ETSI error mitigation 
strategy), HQ, and HQ with the three-stage EC techniques (HQgc). 
Figure 5(a) are those averaged over all SNR values but separated 
for different noise types in sets A, B, C, and (b) are those averaged 
over all types of noise but separated for different SNR values. The 
ETSI repetition technique actually degraded the performance of 
HEQ-SVQ (3rd bar vs. 2nd bar) because the whole feature vectors 
including the correct subvectors are replaced by the very possibly 
inaccurate estimations. HQ without any EC techniques (the 4-th 
bar) actually outperformed the first three bars for all noise types 
and all SNR values. Applying the proposed three-stage EC 
techniques further improved the performance significantly for all 
noise types and all SNR values. This verified that the three-stage 
EC framework is robust against both environmental noise and 
transmission errors. 

The next sets of experiments compared in Figure 5 are HEQ-
SVQ, HEQ-SVQ with repetition of ETSI, HQ, and HQ with the 
three-stage EC, all with GPRS at traveling speeds 0/3/50/100/250 
km/hr, for car/babble input speech noise at 15 dB and 5 dB SNR in 
Figure 6 (a1)/(a2) and (b1)/(b2) respectively. The superiority of the 
proposed HQ with EC (HQgc) are quite clear as verified by the 
highest curves in all cases. As an example, for 15 dB car noise at 
100km/hr as shown in Figure 6(a1), the performance of HEQ-SVQ 
degraded seriously (79%), HQ is much better (86%), applying 
ETSI repetition on HEQ-SVQ does not help (73%), while the 
three-stage EC offered very good improvements (93.5%). Note that  
here in Figure 6(a1) the HEQ-SVQ features with noise 
disturbances are more sensitive to transmission errors (83% at 
0km/hr and 79% at 100km/hr), while HQ features are more robust 
(88% at 0km/hr and 86% at 100km/hr). For 5 dB car noises as 
shown in Figure 6(b1), the performance of HEQ-SVQ degraded 
(e.g. 59% at 100 km/hr), HQ is much better (e.g. 67% at 100 
km/hr), and the three-stage EC further improved the performance 
significantly (e.g. 77.5% at 100 km/hr). Similar situations can also 
be found in all cases in Figure 6. 
 

6 CONCLUSIONS 
A three-stage error concealment (EC) framework based on the 
Histogram-based Quantization (HQ) for Distributed Speech 
Recognition (DSR) is proposed. Improved recognition 
performance was obtained consistently for a wide variety of 
environmental noise and transmission error conditions. 
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