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ABSTRACT

Most statistical speech recognition systems make use of
segment-level features, derived mainly from spectral envelope
characteristics of the signal, but ignore supra-segmental cues
that carry additional information likely to be useful for speech
recognition. These cues, which constitute the prosody of the
utterance and occur at the syllable, word and utterance level,
are closely related to the lexical and syntactic organization of
the utterance. In this paper, we explore the use of acoustic and
lexical correlates of a subset of these cues in order to improve
recognition performance on a read-speech corpus, using word
error rate (WER) as the metric. Using the features and meth-
ods described in this paper, we were able to obtain a relative
WER improvement of 1.3% over a baseline ASR system on
the Boston University Radio News Corpus.

Index Terms— speech recognition, prosody, re-ranking
N-best lists

1. INTRODUCTION

Most modern automatic speech recognition (ASR) systems
consist of two components: a) an acoustic model, which
provides the likelihood of acoustic (spectral) features given
the sequence of words, and b) a language model, which es-
tablishes constraints on hypothesized word sequences. ASR
acoustic features are usually extracted over window lengths
of a few tens of milliseconds, and while they are well-suited
for capturing the variation of spectral content over time, they
miss useful information contained in the prosody of the ut-
terance, which manifests itself at higher linguistic (syllable,
word, and utterance) levels. Likewise, language models typ-
ically used in ASR do not exploit the relationship between
lexical items and the prosodic structure of the utterance.
Previous work on automatic annotation of prosodic events
(such as pitch accents and phrase boundaries) in speech [1, 2]
has demonstrated that there is a close relationship between
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said events and the lexico-syntactic structure of the utter-
ance. In [2], we showed that pitch accents are strongly corre-
lated with syllable tokens that occur mostly in content words.
Moreover, canonical stress patterns annotated in many pro-
nunciation dictionaries are good indicators of pitch accents
in speech. These dependencies can be used to augment the
standard ASR model to improve recognition performance.

The task of integrating prosody within an ASR frame-
work has been previously dealt with in [3], [4] and [5]. In
general, this is a difficult problem, since prosodic events oc-
cur over larger, ill-defined time-scales, giving rise to prob-
lems of asynchronicity. One way is to incorporate prosodic
features as another stream at the segment level [5]; this has
the advantage that spectral and prosodic features are jointly
modeled. However, with this framework, we cannot capture
phenomena beyond the segment level. Alternatively, models
for prosody can be built independent of the ASR acoustic and
language models. This has two advantages: a) the models can
be built at arbitrary linguistic levels and combined with the
ASR hypotheses as a post-processing step (lattice or N-best
list rescoring) and b) no modification of the conventional ASR
is necessary to include prosodic information. The downside
of this approach is that correlations between the spectral and
prosodic features will not be captured by the model. Yet an-
other consideration is whether the relation between prosodic
and lexical elements is modeled directly, or through an inter-
mediate symbolic transcription (such as ToBI [6] or its sub-
sets).

In this paper, we investigate the use of prosodic events in
the form of pitch accents to improve speech recognition over
a baseline ASR system. We use a simple binary intermediate
symbolic representation of pitch accents in the form of bi-
nary “yes”-"no” tags, derived from a ToBI-style transcription
of prosody. We adopt the INV-best rescoring approach, assum-
ing that the acoustic-prosodic features are conditionally inde-
pendent of the spectral features given the word sequence and
pitch accent events. The rest of this paper is organized as fol-
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lows: Section 2 describes our data corpus and baseline ASR
setup. Section 3 presents our prosody model and the N-best
list re-ranking scheme. Section 4 describes the results of our
re-ranking experiments. Finally, Section 5 includes a brief
discussion of the work presented in this paper and outlines
future directions for research.

2. DATA CORPUS AND BASELINE ASR

The Boston University Radio News Corpus (BU-RNC) [7]
consists of about 3 hours of read speech with 6 speakers
(3 female, 3 male). We use this corpus because it contains
prosodic annotations in the form of ToBI-style labels for pitch
accents, phrase boundaries and lexical break indices. After
eliminating news story repetitions by the same speaker, the
remaining data (about 2h 40m worth of speech) was split into
10 random training and evaluation partitions which were ap-
proximately equal in size (14K words vs. 13K words). The
evaluation partitions were further divided into held-out devel-
opment (4.2K words) and test sets (8.7K words). We devel-
oped a baseline ASR for this corpus as described below. No
prosodic information was used in the design of the baseline
system.

2.1. Baseline ASR

We used the University of Colorado SONIC continuous
speech recognizer [8] to develop the baseline ASR. We
adapted context-dependent triphone acoustic models from the
Wall Street Journal (WSJ) task with data from the training
partitions of the BU-RNC using the tree-based MAPLR al-
gorithm supported by SONIC. The adapted acoustic mod-
els were gender-specific but otherwise speaker independent.
We used PMVDR features derived from the acoustic signal
to train these models. A standard back-off trigram language
model with Kneser-Ney smoothing was trained with a mix-
ture of text from the WSJ, HUB-4 and BU datasets (totaling
over 4.7 million words). The language model vocabulary was
slightly over 28.5K words; the test set vocabulary was ap-
proximately 2.3K words. The out-of-vocabulary (OOV) rate
on the test set was 2.0%. The baseline ASR was used to gen-
erate 1-best hypotheses for the evaluation utterances.

2.2. N-best list generation

In addition to the baseline 1-best hypothesis, we also gener-
ated a N-best list containing the top-/N hypotheses for each
evaluation utterance. After analysis of oracle WER drop-
off rates for different values of NV (see Section 4), we chose
N = 100 as a good compromise between processing time and
potential loss of accuracy.

Fig. 1. Directed graph illustrating conditional independence
assumptions between spectral features and prosodic events,
given the sequence of words.

3. PROSODY MODEL

We attempt to exploit the relationship between pitch accents
and lexical items to improve ASR performance. We augment
the standard ASR equation to include prosodic information as
follows.

(W*, P*) = argmax p(W,P|Ag, Ap) e
WP

This is similar to the models presented in [3] and [5].
However, our subsequent decomposition and architecture of
this model is different in the following respects.

e We do not modify the original ASR acoustic or lan-
guage models. Prosody is used as an external knowl-
edge source that can be used to refine ASR hypotheses
in a N-best or lattice rescoring framework.

e Our prosody model is constructed at the sub-word (lin-
guistic syllable) level, since pitch accents are carried by
syllables. This makes it better suited for disambiguat-
ing words which have the same phonetic pronunciation,
but carry pitch accents on different syllables.

Based on conditional independence assumptions encoded
by Figure 1, Eq. 1 can be rewritten as follows.

(W*P*) = argmaxp(W,P,Aq Ap)

WP

= argmax p(W)p(As|W)p(P|W)p(A,|P)
p(P|Ap)

Lo PPIW)

= argmaxp(W)p(As|W)-
WP ~Y— —  ——

ASR score
prosody score

where W, Ag, P and A, stand for the word, acoustic (spec-
tral) feature, pitch accent label, and acoustic-prosodic fea-
ture sequences, respectively. The prosody model was built at
the syllable level. Syllable-level transcriptions of the train-
ing data and N-best hypotheses were obtained by running
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a rule-based syllabifier [9] on the text. The pitch accent la-
bel sequence was obtained by binarizing all ToBI-style pitch
accents to “yes”-"no” categories. Acoustic-prosodic fea-
tures were extracted from the speech signal from automatic
syllable-level forced-alignment of the training text or the V-
best hypotheses, depending on whether we were training or
evaluating the system. The model shown above has three sub-
components, which are described as follows.

99 99,

3.1. Acoustic-prosodic model

This refers to the model p(P|Ap), which provides the pos-
terior probability of pitch accent labels given the acoustic-
prosodic evidence. Based on previous work in prosody label-
ing, the acoustic-prosodic features that make up A, include

1. FO: FO-range features (max-min, max-avg, avg-min),
difference in mean FO between current, previous and
next syllable

2. Energy: within-syllable energy range features (max-
min, avg-min)

3. Timing: syllable nucleus duration

These features were normalized to minimize effects of
speaker- or nucleus-specific variation. The model is trained
as a feedforward neural network (MLP) with 8 input nodes,
25 hidden nodes and 2 output nodes with softmax activation,
with outputs interpreted as posterior probabilities.

3.2. De-lexicalized prosody sequence model

The term p(P) establishes constraints on the sequence of
pitch accent events P. Since P has a binary vocabulary, it
was robustly estimated from small amounts of training data.
We modeled this component as a 4-gram back-off language
model with pitch accent labels obtained from the training
data.

3.3. Lexical prosody sequence model

The lexical prosody sequence model p(P|W) establishes
constraints on the sequence of prosody labels P given the
word sequence W. Since we built prosody models at the syl-
lable level, we first decomposed the sequence of words into
the corresponding sequence of syllables S using the syllab-
ifier. Concurrently, we obtained a canonical stress label for
each syllable from the widely available CMU pronunciation
dictionary. We have previously shown [2] that these canon-
ical stress labels exhibit high correlation with pitch accents.
This provided us with another stream of features L. The
lexical prosody sequence model then becomes p(P|W) =
p(P|S,L). We approximated this as a language model with

multiple factors, as shown below for a bigram structure. In
practice, we used a trigram structure for this model.

n
p(P|S,L) = p(p1]s1,11) - Hp(pi|5i7li7pi—17 Si—1,1li—1)
i=2

Each of the above prosody models was trained using slightly
over 22,800 syllable samples. The sequence models were
trained with explicit word boundary tags. The parameter-
rich lexical prosody sequence model presented a sparsity is-
sue, since we only had a small amount of annotated data with
which to train this model. In order to obtain smoothed proba-
bilities for this model, we implemented it as a factored back-
off LM [10] with a fixed back-off path. Due to their consider-
able vocabulary, the greatest effect of sparsity was on account
of the syllable tokens s;; at any given level in the history,
we dropped these first in our back-off structure. We used the
SRILM toolkit [11] to train this model.

4. EXPERIMENTS AND RESULTS

The entire data corpus was divided into training, held-out de-
velopment and test sets, and a baseline ASR was built accord-
ing to the description given in Section 2. The average 10-fold
cross-validated baseline WER on the test set was determined
to be 22.8% (22.7% on the development set). We also gen-
erated N-best lists for each test utterance for use in our re-
ranking experiments. The upper curve in Figure 2 shows the
variation in oracle WER as a function of N for the baseline
N-best lists. It is clear that the greatest improvement in ora-
cle WER occurs at lower values of N. Based on this empirical
observation, we set N = 100. The average oracle WER for
these 100-best lists across 10 cross-validation test sets was
19.8%, and the average anti-oracle WER was 27.0%. This
represented a 3.0% margin for improvement, and a 4.2% mar-
gin for degradation.

The prosody model was evaluated on each hypothesis of
the N-best lists, which were re-ranked based on a weighted
combination of the ASR score (generated from the acoustic
and language models) and the score assigned by the prosody
model. The weight of the prosody model was optimized on
the held-out development data and was then applied to the
test data. After re-ranking, the average 1-best WER on the
development set reduced by 0.4% to 22.3%, while the aver-
age 1-best WER on the test set was 22.5%, corresponding to
a 0.3% absolute (1.3% relative) reduction in WER. Table 1
summarizes these results, while the lower curve in Figure 2
illustrates the variation in oracle WER as a function of N for
the re-ranked /V-best lists.

In order to determine whether the improvement was sta-
tistically significant, we used the Wilcoxon signed rank test,
which is a non-parametric method for comparing matched
pairs and reporting whether their differences originate from
a zero-median distribution. According to this test, the differ-
ence between baseline and re-ranked WER was significant at
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Fig. 2. Oracle WER on the test set for baseline and re-ranked
N-best lists as a function of N. Upper curve is the baseline
system, lower curve is the re-ranked system.

the p < 0.002 level. This was corroborated by the fact that
there was a modest but consistent improvement in WER in
each of the 10 cross-validation test sets.

5. DISCUSSION

In this paper, we presented a NV-best re-ranking scheme using
a prosody model that was decoupled from the main ASR sys-
tem. The re-ranking method achieved a modest but significant
reduction in WER of 1.3% (relative) compared to the baseline
recognition system. We directly modeled the relationship be-
tween binary pitch accent labels, acoustic-prosodic features,
and lexical items (syllable tokens) without the need for other
sources of information, such as part-of-speech. The structure
of our prosody model makes it possible to integrate prosodic
information within ASR-generated lattices or word meshes
without the need to produce N-best lists and without the con-
comitant loss of information.

We obtained results comparable to [5], where the authors
presented a baseline recognizer with a WER of 24.8%, which
improved to 21.7% with their best performing system. Our
baseline WER was 2% lower, and our testing conditions were
more stiff in the following respects: (a) we did not permit
story repetitions by the same speaker to co-exist in training
and test data, (b) we used only 50% of the remaining data for
training ([5] used 90% of the data for training), and (c) we
used only pitch accent in our prosody model.

One limitation of this method is that it requires training
data to be hand-annotated with the prosodic events of interest.
In order to alleviate this problem, we are investigating unsu-
pervised prosodic event detection techniques based on clus-
tering algorithms [12], which we hope to use to improve ASR
performance without the need for hand-labeled data.

Table 1. ASR performance

System | Dev. WER | Test WER | Significance
Baseline 22.7% 22.8%
Reranked 22.3% 22.5% p < 0.002
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