MULTI-PASS PRONUNCIATION ADAPTATION

Nathan Bodenstab' and Mark Fanty*

'0OGI at Oregon Health & Science University, USA
’Nuance Communications, USA

bodenstab@cslu.ogi.edu,

ABSTRACT

A mapping between words and pronunciations (potential phonetic
realizations) is a key component of speech recognition systems.
Traditionally, this has been encoded in a lexicon where each
pronunciation is transcribed by a linguist or generated by a
grapheme-to-phoneme algorithm. For large vocabulary
recognition systems, this process is highly susceptible to errors.
We present an off-line data driven algorithm to correct suboptimal
pronunciations using transcribed utterances. Unlike previous data
driven algorithms that struggle to balance acoustic representation
and multi-speaker generalization, our multi-pass approach
maximizes both criteria, instead of compromising between the two.
We demonstrate on an automated name dialing task that our multi-
pass algorithm achieves a 70% error rate reduction when compared
to a baseline grapheme-to-phoneme generated lexicon.

Index Terms— pronunciation, speech, learning, adaptation
1. INTRODUCTION

Pronunciation adaptation has been found to significantly improve
automatic speech recognition (ASR) performance in many
applications, especially when applied to proper names [1,2,3]. In
large vocabulary systems, tens of thousands of pronunciations must
be generated to link each word with its possible phonetic
realization(s). This is a difficult task for many reasons as speakers
may have regional accents, vary in speaking style, speak in a non-
native language, or exhibit speaking disabilities. Linguists must
take these factors into account when constructing a lexicon for
speech applications, and suboptimal entries are understandably
prevalent, especially when audio samples are unavailable.

Two opposing objectives of pronunciation adaptation exist: to
make a system more speaker-dependent, or more speaker-
independent. Adaptation for personal dictation or other speaker-
dependent tasks generate new pronunciations that purposely overfit
the acoustic data, customizing the system to the individual. On the
other hand, multi-speaker tasks, such as automated reservation
booking, aim to make the system more speaker-independent,
generalizing the acoustics of many audio samples into robust
pronunciation candidates [4]. In this paper, we focus on the more
difficult problem of adapting speaker-independent systems.

Prior work in this field dates back to the 1970s, and for many
years pronunciation adaptation was carried out using phonological
re-write rules fashioned by linguists. More recently, current data
storage and processing capabilities allow us to analyze hundreds of
hours of audio data, stimulating many data-driven adaptation
techniques. Most algorithms produce new pronunciations via a

1-4244-0728-1/07/$20.00 ©2007 IEEE

IV - 865

mark.fanty@nuance.com

two step process. First, a set of possible pronunciations are
proposed with varying degrees of likelihood. Variations are often
generated using rule-based methods or a phoneme recognizer.
Once this set is constructed, audio samples are analyzed to
determine which pronunciation variations should be added to the
lexicon.

By definition, an adaptation algorithm must start from an
initial location. In this paper, we refer to the initial pronunciation
as the canonical pronunciation. Most adaptation algorithms
assume this canonical pronunciation to be reasonably accurate, and
employ forced alignment to rule-based variations of this initial
candidate. Once this assumption is made, the algorithm must
balance two (potentially) competing factors: acoustic
representation and allowable deviation from the canonical source.
Favoring the acoustic data can lead to overfitting and poor
generalization, while favoring the canonical pronunciation limits
the algorithm’s ability to adapt. For words with poor canonical
pronunciations, no optimal balance exists for a single-pass
algorithm to produce new pronunciations that generalize well.

Our multi-pass algorithm sidesteps this problem by addressing
each issue in turn. During the first pass, we analyze audio samples
and derive frequent phonetic deviations from the canonical
pronunciation. The second pass then constrains the set of possible
pronunciation variations, and forces each audio sample to “choose”
which pronunciation best represent its acoustics. Even when
canonical pronunciations are inaccurate, our multi-pass algorithm
produces pronunciations that both represent the acoustics and
generalizes well to multiple speakers.

2. PRONUNCIATION OPTIMIZATION

Speaker-independent pronunciation adaptation seeks to find
phoneme sequence(s) that express the acoustic data, yet still
generalize to other speakers and speaking conditions. We will
refer to these two factors as acoustic representation and proper
generalization, the balance of each being vital to optimally
adapting pronunciations. Formally, let X be an utterance (acoustic
data), A be the canonical pronunciation, and B; be the i proposed
pronunciation. As in [3], the optimal pronunciation B* can be
found by solving

B*=argmax P(B, | 4,X) - o
B;

ICASSP 2007

Using Bayes rule and simplifying where appropriate,

P(X | A)P(A)
_ PX|B)P(B, | 4) "
P(X | 4)
Substituting Equation 3 into Equation 1 we get
B*=argmax P(X | B)P(B,| 4) -)
B;

As we see in Equation 4, the optimal phone sequence B*
decomposes into two independent components that parallel our
prior optimization objectives: acoustic representation and proper
generalization. Intuitively, the generalization term biases new
pronunciations towards the canonical pronunciation, limiting the
range of deviation we may incur by fitting the acoustics alone.
Balancing these two elements is an important step to finding
satisfactory pronunciations, but as we will see in Section 3.1, it
does not solve the problem completely. The next two sections
focus on these two components individually.

2.1. Acoustic Representation Model

The acoustic representation component of Equation 4 signifies the
similarity between the phoneme sequence B; and the instantiated
phonemes embedded in the audio signal X. Our multi-pass
algorithm does not compute this probability explicitly, but rather
draws on a speech recognition engine to find the optimal
pronunciation B* when supplied with a finite state transducer of
possible pronunciations, appropriately weighted with scores
derived from the pronunciation distortion model.

Recognition is done with a speaker-independent system based
on standard 3-state triphone HMMs, with a Genone-based state
clustering mechanism [4]. The feature extraction front-end
computes 27-dimensional mel-filterbank cepstral coefficients, with
cepstral mean subtraction and standard noise reduction.

2.2. Pronunciation Distortion Model

To ensure new pronunciations do not overfit the acoustic data, we
use the pronunciation distortion model to penalize possible
deviations from the canonical phone sequence. For example,
assume that the canonical phone sequence for the name ‘Stephan’
is A=[s t E £ @ n] and we have competing pronunciations
B=[s s t E v A:] and B,=[s t E £ A: n] (we use
Computer Phonetic Alphabet symbols to represent phonemes).
Although B; may represent the acoustics of one particular utterance
very well (fitting ‘S’ to initial noise, replacing ‘£’ with ‘v’,
dropping final nasal) it will most likely not generalize well to other
utterances, SO P(B| \ A) should be small. B,, on the other hand,

deviates by only one phoneme and is more likely to be robust
across a wide range of speakers and speaking conditions. We
expect p(B, | 4) to be large.

We compute the similarity between any two pronunciations, 4
and B, by first finding the optimal alignment between the
respective phoneme sequences using a dynamic programming
alignment algorithm [5]. We use the “empty” phoneme EPS to

Phone Sequence
EPS st E£f @ n
s t E v A: EPS

Canonical
Candidate S

Table 1. Dynamic programming alignment of two
pronunciations for “Stephan” —[s t E £ @ n]
and [S s t E v A:]. EPSis the empty phoneme.

represent insertions and deletions. The optimal alignment between
A and B, is seen in Table 1. This procedure guarantees that both
phoneme sequences have an equal number of elements. Once
alignment is complete, we assume independence between pairs of
phonemes and calculate the probability

P8I 4)=]]Plb,1a) ®

The probabilities P(p[|P/) for all p;, p; in the phoneme set

(including EPS) correspond to a confusion matrix of phoneme
substitutions. To estimate these probabilities, linguistic knowledge
of phoneme similarity is necessary, as well as insertion and
deletion frequency. Although it is possible to estimate these
probabilities by hand, we choose to take a data-driven approach
when sufficient data is available. Using a large lexicon with
pronunciations transcribed by linguists, we extract each word with
at least two pronunciations. We then align these pronunciations
and tally the number of phoneme substitutions, insertions, and
deletions. The counts from these linguist-certified phoneme
transformations are wused to derive appropriate phoneme
substitution probabilities.

Multiplying simple pair-wise distortions in Equation 5 is an
elegant way to obtain a similarity score between two phoneme
sequences. Previous pronunciation adaptation algorithms [1,3]
include additional context in their distortion model — e.g.

n
P(B | A):HP(bI_ |ai—l’ai5ai+1) — but we choose not to
i=1
include this information for two reasons. First, accuracy results on
pilot tests did not considerably improve with additional context;
and second, this design decision allows straightforward
pronunciation adaptation of languages with insufficient data to
robustly estimate these context-rich probabilities. Simplifying the
distortion model to a confusion matrix of phoneme substitution
probabilities enables linguists to estimate these probabilities by
hand in cases where data is limited.

3. MULTI-PASS ALGORITHM

As a running example, we will adapt the pronunciations of 25
utterances of “Stephan Granger”. The canonical grapheme-to-
phoneme pronunciations are presented in Table 2 and poorly
represent the acoustic samples. The name is French, and properly
pronounced [s t E £ A: n _ g r O: n dZ e/], but speakers
of the 25 utterances have a mix of English or French as their native
tongue. As a result, three pronunciations of ‘Granger’ are
necessary to suitably cover speaker variation. These
pronunciations can also be seen in Table 2.

The multi-pass algorithm processes all utterances with
identical transcriptions as a single group (ie. uses the same

IV - 866

Grapheme-to-phone | Linguist w/ Audio
Stephan | s t E £ @ n s t EfA:n
s t i: £ @ n
s ti: v @n
Granger | g r €/ n dZ r* | g r O: n dzZ e/
g r A: n dz 1i:
gr &ndz r*

Table 2. Prounciations for “Stephan Granger”
generated by a grapheme-to-phoneme algorithm and a
linguist with audio samples.

weighted finite state transducer) and all phonemes are optimized

simultaneously. An outline of our proposed algorithm is as
follows:

PASS 1a: Initialize phoneme lattice with canonical
pronunciation(s). We represent a phoneme lattice of possible

pronunciations using a weighted finite state transducer (WFST)
with individual phonemes as input and the utterance transcription
as output. If multiple canonical pronunciations are available, we
construct a single WFST with each pronunciation in parallel. All
negative log arc weights are set to zero.

PASS 1b: Augment WFST with phoneme transformations.
We introduce all possible substitutions, insertions, and deletions
into the WFST with probabilities from the pronunciation distortion
model. Figure 1 shows a subset of the possible transformations to
the original WFST of PASS 1a.

PASS 1c: Find the best first-pass pronunciation for each
utterance. Using the recognition engine, find the optimal path
through the WFST for each utterance and store the phoneme
sequence.

PASS 2a: Extract phoneme transformations. Reassign the
canonical pronunciation to the most frequent pronunciation in
PASS 1c. Use the dynamic programming alignment algorithm to
align the remaining pronunciations from PASS 1c to the new
canonical pronunciation, and tally phoneme transformations.
Table 3 shows PASS 2a results for “Granger”. We discard the
original canonical pronunciation if it was not returned by any
utterance in PASS Ic.

PASS 2b: Construct second-pass un-weighted FST using
the n-best transformations. Initialize a new FST with the new
canonical pronunciations. Augment this FST with the n-best
transformations extracted in PASS 2a, allowing at most 2" possible
pronunciations. Unlike PASS 1b, do not use probabilities from the
pronunciation distortion model for two reasons. First, the PASS 2
FST uses only transformations that frequently occur, indicating
that the transformation is worth learning. Second, we want to learn
the true acoustics of the utterance set, so eliminating any bias
favoring one phoneme over another is desirable.

PASS 2c: Find the best second-pass pronunciation for each
utterance. Using the recognition engine, find the optimal path
through the new FST for each utterance and store the phoneme
sequence.

n-Best PASS 1 PASS 3 Final
Transformations Pronunciations

Frq | Transformation Frq | Pronunciation

10 | e/ => A: 10 g r O: n dz e/

9 e/ => @: 9 g r A: n dZ 1i:

2 e/ => 0O: 6 g r O: n dZ r*

5 r* => i:

4 r* => e/

Table 3. n-best transformations from PASS 1 recognition

results of “Granger”, and final pronunciations for
“Granger” generated by the multi-pass algorithm.

Figure 1. An example PASS 1 WEST for “Granger” with a
subset of possible phoneme transformations.

PASS 3 (optional): Construct a third-pass un-weighted FST
using the m-best pronunciations. A third pass is unnecessary for
“stable” pronunciations, but for words such as “Granger” spoken
with a variety of linguistic backgrounds, the results of PASS 2c
may be uniform across possible pronunciations. It has been shown
[4] that limiting the number of pronunciations added to a lexicon
in large vocabulary system will increase performance, and for
words with many unique acoustic realizations, a third pass is
necessary to generalize pronunciations even further.

We select the m-best pronunciations from PASS 2¢ and build
an un-weighted FST with only these m possibilities. Finding the
optimal path through this new FST now forces each utterance to
choose its closest pronunciation representative.

Update Lexicon. Add pronunciations from PASS 3 (or 2c)
that have frequency counts above a set threshold. Depending on
the application, these new pronunciations can supplement the
original lexicon, or stand alone, pruning previous lexicon entries
with no (or few) acoustic realizations. Table 3 shows the final
pronunciations added by our multi-pass algorithm for the word
“QGranger”.

3.1 Benefits of a Multi-Pass Algorithm

As is done in many pronunciation adaptation algorithms [3,6], we
can incorporate an additional degree of freedom into Equation 4 by

introducing the weighting parameter A ,

B*=argmax AInP(X | B,)+(1-A)nP(B,| 4) - (6
Bl

This additional parameter allows us to balance the contribution of

acoustic representation and proper generalization, choosing to

favor one over the other. Although beneficial, optimizing A does

not produce optimal pronunciations because we wish to satisfy

both criteria, not compromise them. The next example makes this

IV - 867

A=09 A=0.1
Frq | Pronunciation Frq | Pronunciation
3 g r @n dz r* 18 | g r e/ ndz r*
2 g r A: n dZ e/ 3 g r O: n dZ r*
2 g @r A: n dZ i: 3 g r A: n dZ r*
1 r A: n dz e/ 1 g r A: n dz e/
1 gr O: nZ r*
1 g r @: n dZ r*
1 gr @: 7z e/
1 g r ~ dz r*
1 g r A: ndZz i
0 gre/ ndZ r*

Table 4. Pronunciations for 25 instances of “Granger”
favoring the acoustics (0.9) and favoring the canonical
pronunciation (in bold) (0.1).

point clear. Table 4 shows PASS 1 pronunciation results for

“Granger” when A is large, heavily favoring the acoustics of each
utterance. Of the 25 utterances, 21 have unique pronunciations.
Supplementing the lexicon with these pronunciations that have
been overfit to the acoustic data causes greater recognition error in
large vocabulary systems since the “pronunciation space” of each
word expands and causes word confusion errors.

To inhibit pronunciations from fitting the acoustic too closely,

we can shift A closer to zero. Table 4 also shows pronunciation
results of “Granger” with a lambda value of 0.1, strongly
discouraging deviation from the canonical phone sequence.
Although we know the canonical pronunciation to be incorrect, we
see that a low lambda value does not allow adaptation to the
correct pronunciations.

An assumption made by many pronunciation algorithms is that
the canonical phone sequence requires only minor alterations (if
any) to fit the desired utterances. But when significant deviation is
necessary (e.g. Granger), no optimal lambda value exists that will
produce the desired pronunciations. In these situations, our multi-
pass algorithm has significant advantages by first favoring
utterance acoustics and learning frequent phoneme
transformations, then constraining the set of second-pass
pronunciations to only possibilities that generalize well.

4. EXPERIMENTS

We evaluate the performance of our multi-pass algorithm on an
automatic name dialing task. Name dialing applications benefit
from pronunciation adaptation for many reasons, but primarily
because pronunciations are difficult to produce, as linguists must
infer information about the origin of the name and potential
pronunciations ~ of non-native speakers; rule-generated
pronunciations are even worse.

The name dialing training and testing sets each consist of 3750
manually transcribed utterances, 25 instances of 150 unique names.
The utterances of each set are unique and do not overlap. The

weighting parameter A is optimized on a validation set of
different names to 0.75 and kept constant through all experiments.
The final multi-pass lexicon contains only pronunciations which
are preferred by at least 20% of the utterances in the training set.
Accuracy is measured on correct recognition of an entire name, not
per word. To better simulate a real automatic name dialing system,
we increase the grammar to contain 10,000 names.

Graph-to-phone Linguist
Baseline 25.6 9.6
MP PASS 1 11.2 6.8
MP PASS 2 9.5 6.0
MP PASS 3 7.8 5.4

Table 5. Call-routing error rates on a name dialing task
when canonical pronunciations are generated by a
grapheme-to-phoneme algorithm or by a linguist.

We see in Table 5 that the multi-pass algorithm achieves a
70% reduction in name recognition error when tested against a
rule-based grapheme-to-phoneme pronunciation generator, and
43% reduction in name recognition error when compared to a
linguist-generated lexicon (note that the linguist had access only to
the grapheme representation of words, and not the audio files,
although this is a common practice when composing a lexicon).
We also see in Table 5 that the baseline error rate of Linguist is
higher than the best performance of MP PASS 3 using only rule-
based pronunciations. Nevertheless, seeding the multi-pass
algorithm with pronunciations from a linguist greatly increases the
performance, achieving a 2.4% absolute reduction in name
recognition error.

5. CONCLUSIONS

We have presented a new multi-pass approach to pronunciation
adaptation that eliminates the prior need to compromise between
acoustic representation and proper generalization. We have shown
a 70% reduction in name recognition error rate when evaluated
against a grapheme-to-phoneme generated lexicon, and a 43%
reduction when initialized with canonical pronunciations from a
linguist.

6. REFERENCES

[1] F. Bechet, R. de Mori, and G. Subsol, “Dynamic Generation of
Proper Name Pronunciations for Directory Assistance,” Proc.
ICASSP 02, pp. 1:745-748 vol. 1, 2002.

[2] 1. Amdal, F. Korkmazskiy, and A. Surendran, “Joint
Pronunciation Modelling of Non-Native Speakers Using Data-
Driven Methods,” Proc. ICSLP 00, pp. 111:622-625, 2000.

[3] F. Beaufays, A. Sankar, S. Williams, and M. Weintraub,
“Learning Name Pronunciations in Automatic Speech Recognition
Systems,” Proc. ICTAI *03, pp. 233-240, 2003.

[4] H. Strik, “Pronunciation Adaptation at the Lexical Level,”
Proc. ISCA ITRW Workshop Adaptation Methods for Speech
Recognition, pp. 123-131, 2001.

[5] T. Vintsyuk, “Speech discrimination
programming,” Kibernetika, pp. 4:81-88, 1968.

by dynamic

[6] J. Lucassen and R. Mercer, “An Information Theoretic
Approach to the Automatic Determination of Phonemic
Baseforms,” Proc. ICASSP, pp. 42.5.1-42.5.4, 1984.

IV - 868

