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ABSTRACT

It is well known that usage of an appropriate representation of the
speech signal improves the performance of speech coders, recogniz-
ers, and synthesizers. In this paper we present a representation of
speech that has the ef ciency, in terms of being compact, similar to
that of parametric modeling, but additionally has the completeness
property of signal expansions. The resulting canonical representa-
tion of speech is suited for a wide range of speech processing ap-
plications and we demonstrate this through experiments related to
coding and prosodic modi cation.

Index Terms— speech representation, perfect reconstruction,
frame theory, energy concentration, best basis selection

1. INTRODUCTION

The representation of digitized speech by a set of parameters, each
describing particular characteristics of the speech signal is of im-
portance to all speech processing systems. The usage of an appro-
priate representation yields more ef cient speech coding systems,
improved quality of speech synthesis and (prosodic) modi cation
systems, and increased performance of recognizers.

A general speech representation is speci ed by a model descrip-
tion, model parameters, and signal coef cients. If the representa-
tion consists of signal coef cients alone, such as pulse-code modu-
lation (PCM) samples, it is commonly referred to as non-parametric,
whereas a representation that is entirely model-based, such as the
sinusoidal representation, is referred to as parametric.

It is bene cial to de ne a generic measure of goodness of a rep-
resentation, independently of a particular application. A reasonable
measure is compactness of the representation under the constraint of
completeness. A compact (or sparse) representation implies a repre-
sentation that has relatively few model parameters and has relatively
few signi cant signal coef cients per unit time. This is consistent
with the energy of the coef cient space being concentrated into a
small subspace, which is advantageous for compression. By com-
pleteness of a representation we mean that the signal can be recon-
structed perfectly given the representation. The concept of compact-
ness and completeness of a representation was previously discussed
in the context of speech in [1].

To arrive at a compact representation of a signal it is important to
utilize all structure that the signal has. If we consider the speech sig-
nal in particular, we can identify two prominent regularities: short-
term dependencies due to the resonances of the vocal tract, and long-
term dependencies associated with the pitch (vibrations of the vocal
folds).

Similarly to existing speech representations, e.g., [2, 3], the rep-
resentation we propose utilizes both the short-term and long-term

dependencies of the speech signal. However, a signi cant differ-
ence is that we actively search for a compact representation under
the constraint of completeness (perfect reconstruction). The model
that results in our compact and complete representation is a continu-
ation of the ideas presented in [9].

The proposed system consists of four processing blocks: LP
analysis, constant pitch warping, pitch-synchronous transform, and
modulation transform. We select both the pitch-synchronous and
modulation transforms to be frequency transforms. The combination
of the pitch-synchronous and the modulation transforms form lapped
frequency transforms [4], and similarly to all frequency transforms,
they approximate the Karhunen-Loève transform (KLT) for station-
ary signal segments. The KLT maximizes the coding gain, which
can be seen as a particular form of energy concentration in a statis-
tical sense. (Note that this energy concentration in a statistical sense
differs from the energy concentration for coef cients describing ob-
served sequence, which we use elsewhere in this paper.)

If the pitch is constant, the pitch-synchronous and the modu-
lation transforms can be applied directly on the speech signal to
achieve a highly energy concentrated representation. It is desirable
to describe the variances of the signal coef cients after the transfor-
mations in an ef cient manner. Towards this goal we describe the
spectral envelope by a parametric model. As is common in speech
processing, we use the conventional AR model for this purpose. In
practice, the pitch is varying over time, which implies that either the
pitch-synchronous and modulation transforms have to adapt to the
pitch, or the signal has to be made into a constant pitch signal.

In this work we warp the speech signal of varying pitch into a
signal of constant pitch. The warping simpli es signi cantly the de-
sign of the pitch-synchronous and modulation transforms. The out-
put of the warper is a description of a time-continuous pitch-track
and a signal of constant pitch. Because of the constraint of com-
pleteness of the representation, the warped signal has to be over-
sampled, and thus, an increased ef ciency of the AR-modeling and
preservation of formant bandwidths and locations is obtained if the
LP analysis is performed prior to the warper. This provides moti-
vation for both the existence and the order of the processing blocks
of the proposed system. An additional motivation for the proposed
structure is that it facilitates the identi cation of voiced and unvoiced
signal coef cients, which increases compactness, since a parametric
description of the unvoiced signal coef cients suf ces for good qual-
ity [5]. The decomposition in a voiced and an unvoiced component
is also bene cial for prosodic modi cation (time- and pitch-scaling)
of speech [6].

2. SPEECH ANALYSIS

As mentioned in the introduction, the proposed system consists of
four stages: LP analysis, constant pitch warping, pitch-synchronous

IV ­ 8491­4244­0728­1/07/$20.00 ©2007 IEEE ICASSP 2007



transform, and modulation transform. The individual stages are de-
scribed in detail in the following, starting with the linear-prediction
analysis.

2.1. Linear-prediction analysis

To obtain a compact description of the distribution of energy along
the frequency axis, we apply linear-prediction (LP) analysis to the
signal. The LP analysis decomposes the signal into a set of time-
varying parameters that specify an autoregressive (AR) model of
the resonances and the spectral tilt, and a residual signal. Since the
short-term statistics vary over time, the LP analysis is performed on
short segments of the speech (typically of 20 ms duration). Let s(n)
denote sample n of a discrete speech signal. The LP analysis can
then be expressed as e(n) = s(n) +

�M

m=1
aM

l,ms(n −m), where
e(n) denotes the LP residual, and aM

l,m is them’th linear prediction
coef cient of prediction order M for a block l. The block index
l = �n/L�, where �·� denotes the rounding upwards to the nearest
integer, and L denotes the block length for the LP analysis.

2.2. Warping

For voiced speech the duration and shape of the pitch cycles gen-
erally change slowly. Thus, the long-term dependencies are strong
(high redundancy), and can be used to obtain a compact representa-
tion. The rst step in this process is warping the excitation e(n) into
a signal of constant pitch. That is, we separate the duration of pitch
cycles (the pitch track) from the pitch-cycle shapes. The warping
facilitates the following processing stages to yield a compact signal
representation.

The warper is based on a continuous-time representation of the
instantaneous pitch. In this work the warping function t(τ), relating
the time domain t and the warped time domain τ , is modeled using
cubicB-splines (with coef cients spaced proportional to the average
pitch). The objective function of the warper is a waveform similarity
measure between the signal and the signal delayed by one pitch pe-
riod. We seek the B-spline coef cients of the warping function t(τ)
that minimizes the objective function. For a detailed description of
the estimation of the instantaneous pitch and the warping function
we refer to [7].

Because of the one-to-one mapping between the warped and
original time-domains, we can derive the inverse mapping τ(t) from
the estimate of t(τ). τ(t) is needed for the reconstruction of the
original residual from the warped residual, which is discussed in
Section 3.

The discrete warped signal sample ewarped(ν), where ν is the
sample index, can be expressed as

ewarped(ν) = Θe(ν) = 〈e, θν〉, ∀ν ∈ Z, (1)

where Θ is a frame operator [8] applied to the residual signal e of
in nite dimension, and θν is the ν’th frame function. The warp-
ing is effectively an irregular sampling; under certain conditions the
set of displaced sinc functions form a frame [8]. The frame func-
tions θν are de ned as θν(n) = sinc(n − t(ν)), where sinc(x) =
sin(πx)/(πx). The warped residual at the discrete warped sample
index ν becomes ewarped(ν) =

�
n∈Z

e(n)θν(n). Thus, the discrete
warped residual ewarped is formed by an irregular (over-) sampling of
the continuous-time residual e(t).

2.3. Pitch-synchronous transform

The outputs of the warper are a residual signal of constant pitch and
a description of the corresponding continuous-time pitch-track. By

utilizing the high redundancy between consecutive pitch cycles it is
possible to get a compact representation. This, for instance, can be
accomplished by a two-stage procedure with a pitch-synchronous
transform followed by a modulation transform (cf. the two-stage
sparseness approach of [9]).

In this work, we select a modulated lapped transform (MLT) [4]
as the pitch-synchronous transform. The MLT has the advantage of
facilitating a critically sampled uniform lter bank with coef cients
that are localized in time and frequency.

Let Φ denote the frame operator. The MLT coef cients can then
be expressed as

f(k, l) = Φewarped(k, l) =

〈ewarped, φkl〉, ∀k ∈ Z, ∀l ∈ {0, ..., P0 − 1}, (2)

where k and l are time and frequency indices, respectively. In our
implementation, the frame functions φkl’s are constructed from the
combination of the square-root of a Hann window (to satisfy the
power complementarity constraint needed for the perfect reconstruc-
tion) and DCT-IV functions. That is,

φkl(ν) = wν

�
2

P0

cos

�
(2l + 1)(2ν − (2k + 1)P0 + 1)π

4P0

�
,

(3)
where P0 denotes the normalized pitch, and where the window wν

has a non-zero support only for ν ∈ [kP0, ..., (k + 2)P0 − 1].

2.4. Modulation transform

If we consider a speech signal belonging to a steady voiced sound,
the warped residual consists of a sequence of similarly shaped pitch
cycles of equal duration. The output from the pitch-synchronous
transform of such a signal is a sequence of MLT coef cients that
change slowly over time. Thus, applying a modulation transform
on this sequence renders signal coef cients that are compact, i.e.,
the energy of the modulation transform coef cients is concentrated
into the lowest modulation bands. This is the main motivation for a
modulation transform.

An additional motivation is that a modulation transform allows
for identi cation of voiced and unvoiced signal coef cients, bene-
cial for both coding and modi cation of speech. For the voiced-
unvoiced decomposition we assign the low modulation bands to our
voiced speech category. The coef cients of the low modulation
bands represent the constant and slowly evolving components of the
pitch-synchronous coef cients over time (block length of the modu-
lation transform). In this work we assign the lowest 20% (minimum
three bands) of the modulation bands to belong to the voiced cate-
gory.

Our implementation of the modulation transform is a DCT-II
with a rectangular window of adaptive length. The combination of
rectangular windows and DCT-II facilitates the implementation of
the modulation transform as a critically sampled lter bank. A de-
sired property of the resulting lter bank, from an energy concentra-
tion point of view, is that a sequence of constant coef cients from
the pitch-synchronous transform renders only the DC coef cient
nonzero in the modulation domain. The selection of the window
lengths is based on an energy concentration criterion of the modula-
tion coef cients, assigning short windows (high temporal resolution)
to rapidly changing regions and long windows to steady regions.
Thus, our adaptive modulation transform is a best basis selection
using the local cosine basis functions of the DCT. Given the win-
dow lengths from the best basis selection the modulation transform
can be expressed as a set of frames, where the modulation transform
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coef cients g(p, q, l) are formed by the inner products between the
pitch-synchronous coef cients and the modulation frame-functions,
i.e.,

g(p, q, l) = Ψf(p, q, l) = 〈f, ψpql〉,
∀p ∈ Z, ∀q ∈ {0, ..., Qp − 1}, ∀l ∈ {0, ..., P0 − 1}, (4)

where Ψ denotes the modulation frame operator and p, q, and l de-
note time block, modulation frequency, and frequency bands, respec-
tively.

The frame function ψpql is constructed by a set of windowed
DCT-II functions and de ned as

ψpql = vQp
c(q)

�
2

Qp

cos

�
(2(k −�p−1

j=1
Qj) + 1)qπ

2Qp

�
, (5)

where the modulation bands q ∈ {0, ..., Qp − 1}, and where
vQp

denotes a rectangular window of effective length Qp starting at
position k −�p−1

j=1
Qj , and c(0) = 1/

√
2 and c(q) = 1 for q 	= 0.

Similarly to the best basis algorithms presented in [10], we only
consider a computationally ef cient method for the selection of the
set of {Qp}p∈Z. The initial length of the modulation window for
block p is set to one, i.e., Qp = 1 and then extended as long as
there is an increase in the energy concentration of the correspond-
ing modulation coef cients. Many energy concentration cost func-
tions can and have been used, e.g., coding gain based [11] or en-
tropy based [10], and the particular choice depends on the applica-
tion at hand. In our application we found the use of the entropy
based energy concentration criterion of [10] inappropriate since the
modulation coef cients of the highest frequency channels contain
essentially no energy (due to the oversampling of the warper), and
therefore, have a too large impact on the criterion. Thus, to measure
the energy concentration of the modulation coef cients of block p
with window size Qp, we use the following function

CE(p,Qp) = −
Qp−1�
q=0

����P0−1�
l=0

g(p, q, l)2, (6)

and we extend the window size Qp to Qp + 1 if

CE(p,Qp + 1) ≥ CE(p,Qp) + CE(p+ 1, 1)− λ. (7)
The λ in (7) is a bias-term favoring long windows which is advan-
tageous for silence and purely unvoiced sounds to have a larger por-
tion of the modulation coef cients assigned as unvoiced (since we
assign to the voiced speech category the coef cients of at least the
three lowest modulation bands). For wideband speech represented
in a raw 16 bit format (amplitudes from -32767 to 32768) we found
λ = 1000 to be an acceptable choice.

Fig. 1 shows an example of the behavior of the transforms and
voiced/unvoiced decomposition of a voiced onset. In Fig. 1 note how
the segment labeled B isolates the transient-like onset, and that the
segment labeled C captures the steady voiced region.

3. SPEECH SYNTHESIS

In the speech analysis operation we separated the coef cients of
the modulation transform into the voiced and unvoiced categories.
The synthesis operation, from the modulation coef cients to the
linear-prediction residual, consists of a series of expansions using
the dual frame of each forward frame expansion. That is, the linear-
prediction residual from, e.g., the voiced modulation coef cients,
gvoiced, can be expressed as

evoiced(n) = Θ�Φ�Ψ�gvoiced(n), ∀n ∈ Z. (8)

Warped time

A
m

pl
itu

de

Time blocks

C
ha

nn
el

s

Modulation bands

C
ha

nn
el

s

Warped time

A
m

pl
itu

de

CBA

CBA

Fig. 1. Top left: Warped residual at a voiced onset. Top right: In-
tensity plot of the corresponding MLT coef cients from the pitch-
synchronous transform. The A, B, and C labels the segments ob-
tained from the best basis selection (A is incompletely displayed as
B and C are of main interest.). Bottom left: Intensity plot of the
coef cients from the modulation transform (note that the low modu-
lation bands are located to the left in each of the segments A,B, and
C). Bottom right: reconstructed voiced and unvoiced warped residu-
als.

In more detail, the voiced MLT coef cients of the pitch-
synchronous transform are obtained from the correspond-
ing modulation coef cients by the expansion fvoiced(k, l) =�

p∈Z

�Qp−1

q=0
g(p, q, l)ψpql(k). Similarly, the warped residual be-

longing to the voiced MLT coef cients becomes ewarped,voiced(ν) =�
k∈Z

�P0−1

l=0
fvoiced(k, l)φkl(ν). Note that the pitch-synchronous

and modulation transforms are both tight frames (or orthogonal
bases) and that, thus, their inverses are trivial. The warped
residual is an irregular oversampling of the original residual
(cf. Section 2). The inverse frame operator is the pseudo in-
verse of the analysis frame. Thus, the voiced LP residual is
evoiced(n) =

�
ν∈Z

ewarped,voiced(ν)θ
�
n(ν), where θ�

n is the n’th
row vector of the pseudo-inverse Θ� = (ΘHΘ)−1ΘH .

Finally, applying the LP synthesis lter to the residual yields
the voiced speech signal. The reconstruction of the unvoiced speech
signal is analogous.

4. EXPERIMENTS AND RESULTS

Both coders and systems for time- and pitch-scaling of speech can
be made based on our proposed speech representation. For instance,
a variable-rate speech coder can be developed by applying entropy-
constrained quantizers to the parameters and coef cients followed by
an arithmetic coder. A prosodic modi cation system for time- and
pitch-scaling of speech can be obtained by interpolating the pitch-
synchronous coef cients and changing the warping function t(τ)
correspondingly.

For both speech coding and prosodic modi cation, voiced-
unvoiced decomposition is of great importance. In coding we can
achieve large coding gains by replacing the unvoiced waveform de-
scriptors with Gaussian noise (with properly matched gain and color)
[5]. Prosodic modi cation systems also bene t from the decomposi-
tion since arti cial periodicity introduced when stretching unvoiced
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sounds in time can be combated by e.g. randomizing the phase of
the unvoiced signal components. Thus, in this section we demon-
strate the performance of the voiced-unvoiced decomposition of our
system. However, we start with providing some implementation spe-
ci c details.

4.1. Implementation speci c details

For all the experiments we used speech from the TIMIT database
sampled at 16 kHz. The LP analysis is performed every 20 ms us-
ing a prediction order of 18 with a bandwidth expansion factor of
0.997. The normalized pitch lag P0 is set to 256. To reduce compu-
tational complexity we approximate the pseudo-inverse by an irregu-
lar (down-) sampling when going from the warped to the regular time
domain. We obtain an signal to noise ratio of approximately 60-70
dB between the original and synthesized speech using bandlimited
sinc-interpolation (Hann window of 100 samples support).

4.2. Voiced fricatives

The decomposition into voiced and unvoiced components is done
continuously over the time and frequency space. This facilitates
voiced-unvoiced separation even for voiced fricatives. Voiced frica-
tives are fricatives articulated with oscillating vocal folds. Fig. 2
shows the original (top), voiced (middle), and unvoiced (bottom)
power spectra of a /z/-sound. The strong harmonic character of the
decomposed voiced signal spectrum is clearly visible in the voiced
power spectrum and it is interesting to note that the unvoiced signal
component dominates the original spectrum already above 1 kHz.
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Fig. 2. Shows the performance of the voiced-unvoiced decomposi-
tion of a voiced fricative /z/-sound. From top to bottom we have the
original, the voiced, and the unvoiced power spectra, respectively.

4.3. Randomized unvoiced components

As mentioned above, proper voiced-unvoiced decomposition is ben-
e cial for both speech coding and prosodic modi cation. Therefore,
to test the performance of the decomposition we randomize the sign
of the unvoiced pitch-synchronous coef cients. To preserve the dis-
tribution of energy within a pitch cycle of the unvoiced residual over
time, we ensure that the randomized and original unvoiced residu-
als have similar smoothed amplitude-envelope (absolute of Hilbert
transformed signal, convolved with Hann window of 20 samples
support, and raised to power 1.3). The modulation is only ap-
plied to the frequencies above 0.5 kHz. For robustness to errors
in the warping-function we assign all components below 1 kHz to
be voiced if the rst re ection coef cient of the corresponding time-
block is below -0.7.

To evaluate the perceptual quality of the system when randomiz-
ing the unvoiced signal, as described above, we performed the Com-
parison Category Rating (CCR) [12]. As anchors we used the modu-
lated noise reference units (MNRU) [13] at SNR levels 25 and 30 dB
(labeled Q.25 respectively Q.30 in the following). From each of the
eight dialect regions of the TIMIT database we randomly selected
one male and one female speech sentence for the test. The eight sub-
jects that participated in the listening test were asked to grade the

quality of the processed speech (i.e., ours denoted by CRoS, and the
anchors Q.25 and Q.30) compared to the original on an integer scale
from -3 to 3 corresponding to much worse, worse, slightly worse,
equal, slightly better, better, and much better [12]. Each pair of
sentences were played twice and in random order to increase the sta-
tistical signi cance of the test. The results from the listening test are
displayed in Table 1 and show that our system is rated between equal
and slightly worse compared to the original.

CRoS Q.25 Q.30
-0.45 +/- 0.14 -1.64 +/- 0.11 -0.94 +/- 0.12

Table 1. Mean scores together with 95% con dence intervals of the
CCR listening test when comparing CRoS, Q.25, and Q.30 to the
original speech. Eight subjects participated in the test.

5. CONCLUDING REMARKS

In this paper we describe a method that uses the redundancies in
the speech signal to derive a compact and complete representation
of digitized speech. The representation is mathematically tractable,
guarantees perfect reconstruction, and is suitable for a wide range
of speech processing applications. Through experiments we have
shown the ef ciency of the voiced and unvoiced separation of our
systems. The method forms a strong foundation for speech coders
and systems for time- and pitch-scaling.
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