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ABSTRACT 
 

This paper addresses the problem of coding the LSF parameters of 

LPC speech coders on a “long-term” basis, i.e. beyond the usual 

#20ms frame duration. The objective is to provide efficient LSF 

quantization for a speech coder with very large delay but very- to 

ultra-low bit-rate and good quality. To do this, a long-term model 

of the time-trajectory of the LSF vectors is applied on long 

segments of speech to capture the inter-frame correlation of the 

vectors over each whole segment. Using this model, it is shown 

that only a reduced set of LSF vectors need to be quantized to 

derive quantized LSF vectors at every original location. 

Experiments show that large gains in bit-rate over usual frame-by-

frame quantization can be achieved (up to more than 50%) while 

preserving signal quality. 
 

Index Terms— Very/ultra low bit-rate speech coding, LPC 

coder, LSF quantization, long-term model. 

 

1. INTRODUCTION 
 

The quantization of Line Spectral Frequencies (LSF) parameters is 

a major issue in LPC-based speech coders at low rates [1][2]. The 

LSF parameters are an appropriate representation of the LPC filter 

which is robust to quantization and interpolation [1]. In speech 

coders, the analysis and coding process is made on a short-term 

basis, using 20 ms-or-so signal frames. However, the LSF 

parameters encode the “vocal tract filter”, which evolution is quite 

smooth and regular for many speech sequences. Therefore, long-

term (LT) correlation between successive LSF values is expected 

to happen for many speech sections (in this paper long-term refers 

to considering long sections of speech, including several to many 

short-term frames of about 20ms). However, because of delay 

constraints, the inter-frame correlation of LSFs is generally consid-

ered locally, i.e. between two or three consecutive frames, using 

for example predictive [3] or matrix [4] quantization techniques.  

 In [5], Dusan et al have proposed to model the trajectories of 

ten consecutive LSF parameters by a fourth-order polynomial 

model. In addition, they implemented a very-low bit rate speech 

coder exploiting this idea. At the same time, we proposed in [6] to 

model the long-term trajectory of sinusoidal speech parameters 

with a cosine-based model. In [6], the size of parameter trajectories 

and the number of model coefficients were variable and could 

exhibit quite different (and often larger) combinations than the ten-

to-four conversion of [5]. In the present paper, we extend the basic 

idea of modeling the trajectory of LSFs [5], by adapting our own 

approach of [6]. The objective is to provide efficient LSF 

quantization for a “long-term speech coder”. Such a coder has a 

quite large delay, and can be used in applications such as half-

duplex communication, speech storage, and speech synthesis. To 

do this, we propose a new method, based on the following process: 

first, speech is segmented into voiced/unvoiced sections; then a 

long-term model of the LSF trajectories is applied on each segment 

to capture the LT inter-frame correlation of these parameters. The 

LT model is a sum of cosine functions closely related to the well-

known DCT transform. A procedure that enables switching from 

the long-term model coefficients to a reduced set of LSF vectors, 

and vice-versa, is introduced. It is directly inspired by the work in 

[5]. The reduced set of LSF vectors is quantized by multi-stage 

vector quantizers, transmitted, and used a the decoder to 

interpolate LSF vectors at the original locations 

This paper is organized as follows. The proposed long-term 

model is described in Section 2. The complete long-term 

quantization of LSF vectors is presented in Section 3, Experiments 

and results are given in Section 4. Section 5 is a short conclusion. 

 

2. LONG-TERM MODEL FOR LSF TRAJECTORIES 
 

In this section, we first consider the problem of modeling the time-

trajectory of a sequence of K consecutive LSF parameters. These 

LSF parameters correspond to a given (all voiced or unvoiced) 

section of speech signal s(n), running arbitrary from n = 1 to N. 

They are obtained from s(n) using a standard LPC analysis 

procedure applied on successive short-term analysis windows (see 

Section 4.1). For the following, let us denote by K = [n1 n2 … nK] 

the vector containing the sample indexes of the analysis frame 

centers. Each LSF vector resulting from the analysis at instant nk is 

denoted ωωωω(I),k = [ω1,k ω2,k … ωI,k]
T, for k = 1 to K (T denotes the 

transpose operator). I is equal to 10 for telephone speech. Thus, we 

actually have I LSF trajectories of K values to model. For this aim, 

let us denote by ωωωω(I),(K) the I×K matrix of general entry ωi,k: The 

LSF trajectories are the I row K-vectors, denoted 

ωωωωi,(K) = [ωi,1 ωi,2 … ωi,K], for i = 1 to I.  

Different kinds of models can be used for representing these 

trajectories. As mentioned in the introduction, a fourth-order 

polynomial model was used in [5] for representing ten consecutive 

LSF values. In [7], we compared different models for long-term 

modeling within the sinusoidal speech framework. The Discrete 

Cosine Model (DCM) was the best, and because of the limitation 

of experimental configurations in Section 4, we consider only this 

model in the present paper. The DCM model is defined for each of 

the I LSF trajectories by: 
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where P is a positive integer defining the order of the model and 

the P+1 model coefficients ci,p are all real (note that in the present 

study, all I LSF trajectories are modeled with the same order P, 

although a specific order could be defined for each trajectory in a 

more general approach, at the cost of increased complexity). 

Given that P is known and P+1<K, the I×(P+1) matrix 

gathering the model coefficients ci,p is obtained by minimizing the 

mean square error (MSE) between the model values evaluated at 

the analysis instants CMi and the LSF data set ωωωωi,(K): 

( ) 1

)(),(

−
= TT

MMMωC KI
 (2) 

where M is the (P+1)×K model matrix that gathers the DCM terms 

evaluated at the entries of N, i.e. M is the matrix of general entry 

mpk = cos(pπnk/N), p = 0 to P, k = 1 to K. In practice, we used the 

regularized version of (2) proposed in [8]: a diagonal penalizing 

term is added to the inverted matrix in (2) to regularize possible ill-

conditioning problems. In our study, setting the regularizing factor 

λ of [8] to 0.01 enabled to never encounter ill-conditioned 

matrices. Finally, please note that the modeled LSF trajectories can 

be expressed as the lines of the matrix: 

CMω KI =)(),(
~  (3) 

 

3. LT QUANTIZATION OF LSF 
 

In this section, we present the complete algorithm for quantizing 

each sequence of K LSF vectors. The shape of the LSF trajectories 

can vary widely, e.g. depending on the length of the sequence, the 

phonetic content, the speaker, and the prosody. Therefore, the 

appropriate order P of the LT model can also vary widely, and it 

must first be estimated based on a trade-off between LT model 

accuracy (for a good representation of the data) and sparseness (for 

bit-rate limitation). For clarity, we first present the quantization 

process assuming that P is known and we present next how it can 

be estimated for each sequence of LSFs.  

The first step of the LSF coding process is to calculate the DCM 

coefficient matrix C of eq. (2) with the order set to P. The next step 

is the quantization, i.e. the representation of the resulting 

information with limited binary resource. To do this, we propose to 

avoid a direct quantization of C, by applying an invertible 

transformation between C and a reduced set of LSF vectors, and 

then to quantize this reduced set using usual techniques. For this 

purpose, we first calculate the set of P+1 indexes, denoted 

J = [j1 j2 … jP+1], that correspond to equally-spaced time positions 

within the N samples of the considered section of speech (with 

rounding to the nearest integer if necessary). Let us then define Q a 

“reduced” model matrix evaluated at the instants of J (remind that 

P+1<K), i.e. Q is the square matrix of general entry 

qpj = cos(pπjr/N), p = 0 to P, r = 1 to P+1. The reduced set of LSF 

vectors is the set of P+1 modeled LSF vectors calculated at the 

instants of J, i.e. the columns of the matrix: 

CQω JI =)(),(
~ . (4) 

The proposed method uses the fact that the matrix C of (2) can be 

exactly retrieved from the reduced set of LSF vectors, by:  

( ) 1

)(),(
~ −

= TT
QQQωC JI

. (5) 

 

Therefore, the quantization strategy is the following. Only the 

reduced set of P+1 LSF vectors is quantized, instead of the overall 

set of K original vectors, as would be the case in a usual coding 

schema. This is done by using Multi-Stage Vector Quantization 

(MS-VQ) techniques [9] presented in Section 4. The indexes of the 

P+1 codewords are then transmitted. At the decoder, the resulting 

quantized vectors, denoted p),(
ˆ

Iω , for p = 1 to P+1, are retrieved 

from the codewords. They are then gathered in a I×(P+1) matrix 

denoted )(),(
ˆ

JIω , and the DCM coefficient matrix is estimated by 

applying (5) with the quantized reduced set of LSF vectors instead 

of the unquantized reduced set: 
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Eventually, the resulting DCM coefficients are used to recalculate 

the “quantized” LSF vectors at the original K time instants nk by 

applying the following variant of (3): 

MCω KI
ˆˆ

)(),( =  (7) 

Note that the resulting LSF vectors, which are the columns of the 

above matrix, are abusively called the “quantized” LSF vectors, 

although they are not directly generated by MS-VQ. This is 

because they actually are the LSF vectors used at the decoder for 

signal reconstruction. Note also that the {K, P} values must be 

transmitted to the decoder as additional information. However, 

since the average number of sections per second is low (e.g., about 

3 for the voiced sections), the {K, P} pair can be coded with very 

few bits, say a few 10s of bits/s, using e.g., Huffman coding. Thus, 

this additional bit-rate remains significantly lower than the gain 

provided by the method (see next section). 

Let now consider the problem of estimating P. For this aim, a 

performance criterion for the overall process is first defined. This 

criterion is the usual Average Spectral Distortion (ASD) measure, 

which is a standard in the LSF quantization literature [2] : 
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where )( ωj
k eP  and )(ˆ ωj

k eP  are the LPC power spectra 

corresponding to the original and quantized k-th LSF vectors of the 

considered sequence, respectively. In practice, ASD is calculated 

using a 512-bins FFT. We then fix a maximal value for ASD, 

denoted ASDmax, and we apply the following iterative algorithm.  

 

Algorithm for LT quantization of a K-sequence of LSF vectors  

1. Choose a value for ASDmax. Set P = 1; 

2. Apply the LT LSF quantization process, i.e.:  

- calculate J (vector of regularly spaced breakpoints),  

- calculate ( ) QMMMωω KIJI

1

)(),()(),(
~ −

= TT
      ((2) and (4)),  

- quantize )(),(
~

JIω to obtain )(),(
ˆ

JIω ,  

- calculate ( ) MQQQωω IKI

1

)(),()(),(
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−
= TT

J         ((6) and (7)); 

3. Calculate ASD between ωωωω(I),(K) and )(),(
ˆ

KIω  with (8); 

4. If ASD>ASDmax and P<K-2, set P←P+1, and go to step 2, 

else (i.e. if ASD<ASDmax or P=K-2), terminate the algorithm. 
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4. EXPERIMENTS 
 

4.1. Database 
 

We used sentences from the TIMIT database [10], filtered to the 

300-3400 Hz telephone band, and resampled at 8 kHz. The LSF 

vectors were calculated using the autocorrelation method, with a 

25 ms Hamming window, high-frequency pre-emphasis with the 

filter H(z)=1–0.9375z-1, and 10 Hz-bandwidth expansion. A total 

of 176 speakers (half male and half female) of the eight different 

dialect regions of TIMIT were used for building the training corpus 

used to design the MS-VQ quantizers (see next subsection), 

leading to a total of 223,501 voiced LSF vectors and 74,533 

unvoiced LSF vectors. The voiced/unvoiced segmentation was 

based on the TIMIT label files. In parallel, 88 other speakers (also 

half male, half female, and from eight dialect regions) were used 

for the test corpus. This test corpus was used to test the LT coding 

process, and it contains 67,080 voiced vectors from 4,656 sections, 

and 22,101 unvoiced vectors from 4,427 sections. 

 

4.2. MS-VQ Codebook Design 
 

For the quantization of LSF vectors, we designed two-stages MS-

VQ: the quantization error at the output of the first VQ block is 

quantized by a second block. The quantized vectors are 

reconstructed by adding the outputs of the two blocks. In such 

structure, the global complexity is highly reduced compared to 

single-stage VQ. In this study, different quantizers are used for 

voiced or unvoiced LSF vectors (as in [11]). We used a resolution 

ranging from 15 to 24 bits/vector, which generally corresponds to 

poor-quality to transparent or “close to transparent” quantization 

(depending on the quantizer structure) [2][9]. 

The design of the quantizers was made by applying the LBG 

algorithm [12] on the (voiced or unvoiced) training corpus 

described in the previous subsection, using the weighted Euclidian 

distance of [2]. The LBG algorithm was first used to design the 

first-stage codebook. Then, the difference between each LSF 

vector of the training corpus and its associated codeword was used 

for the design of the second-stage codebook, again with the LBG 

algorithm. When the total number of bits was even, the two blocks 

were allocated the same number of bits. Otherwise, the first block 

was allocated one bit more than the second block. 

 

 
Figure 1: LSF trajectories corresponding to the sentence “Elderly people 

are often excluded” from the TIMIT database, pronounced by a female 

speaker. The vertical lines define the long term frame boundaries. The total 

number of LSF vectors is 108. Solid line: original LSF vectors; dotted line: 

LT coded LSF vectors with ASDmax = 2dB for the voiced sections and 

ASDmax = 3dB for the unvoiced sections, and with r = 20 bits/vectors.  

4.2. Results 
 

We present on Fig. 1 the original LSF trajectories of a peculiar 

sentence of the test corpus (“Elderly people are often excluded” 

pronounced by a female speaker), together with the corresponding 

LT-coded LSF trajectories, after termination of the algorithm. This 

sentence contains five voiced (V) sections and four unvoiced (U) 

sections. In this experiment, the ASD target (ASDmax) was fixed to 

2 dB for the voiced sections and 3 dB for the unvoiced sections. 

The resolution r was fixed to 20 bits/vector for both voiced and 

unvoiced quantizers. The total number of DCM coefficients for all 

the sentence was 50, for K = 108 original LSF vectors. Fig. 1 

illustrates the ability of the LT model of LSF trajectories to 

globally fit the original LSF trajectories, even if the model 

coefficients are calculated from the quantized reduced set of 50 

LSF vectors (as is the case at the decoder).  

Now, we present global results obtained on the entire test 

database (4,656 voiced sections or 4,427 unvoiced sections) in 

terms of ASD (8) and average bit-rate. Since the LT coding scheme 

is an intrinsic variable-rate technique, this latter is defined by: 
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where, m indexes each sequence of LSF vectors of the database, M 

is the number of sequences, r is the resolution of the quantizer (in 

bits/vector), and h is the hop size of the LSF analysis window (we 

set h = 20 ms, to fairly compare our method with the frame-by-

frame approach, since 20 ms is a usual frame spacing for LSF 

coding). Note that, in the LT coding process, increasing the 

resolution does not necessarily increase the bit-rate, as opposed to 

usual coding methods, since it may lead to decrease the number of 

LT model coefficients.  

The results are presented in terms of distortion-rate curves in 

Fig 3 for the voiced sections, and in Fig. 4 for the unvoiced 

sections. Each one of the curves on the left corresponds to a fixed 

resolution (which value is plotted), the ASD target ASDmax being 

varied with a 0.1dB step. The curve on the right corresponds to the 

frame-by-frame quantization, for which the performances were also 

calculated for comparison, for different resolutions.  

It can be seen that the curves corresponding to the LT coding are 

all situated on the left of the curve of the frame-by-frame 

quantization. They thus correspond to smaller bit-rates. Moreover, 

by taking the leftmost point, the gain in bit-rate for approximately 

the same ASD can be very large, depending on the considered 

region and the chosen LT coding configuration. For instance, for 

voiced speech and for an ASD approximately below 1.8 dB, the 

use of a 24 bits/vector quantizer is an optimal choice (but untested 

greater resolutions are likely to provide even better results). Also, 

in this region, the bit-rate difference for the two methods increases 

as the ASD increases. For example, with r = 17 bits/vector, the 

ASD obtained with the frame-by-frame quantizer is 1.82 dB, for a 

bit-rate of 850 kbits/s = 17×50 bits/s. At the same time, the LT 

coder with r = 24 bits/vectors provides 1.78 dB of ASD at 

540.3 bits/s. Thus, the bit saving is about 36.5% (310 out of 850). 

For ASD values above 1.8 dB, the plot is a little more intricate, 

since the different LT coding curves are crossing each other. This 

crossing effect illustrates the trade-off between quantization 

accuracy and modeling accuracy that has already been mentioned. 

However, very large gains in bit-rate can again be obtained. 

Moreover, the (optimal) bit-rate difference between the leftmost 
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point from all LT coding curves and the point of the frame-by-

frame coding is quite stable across ASD values: it remains close to 

300 bits/s. Therefore, the relative gain in bit-rate between the two 

methods is increasing with the ASD. For example, the ASD 

obtained with the frame-by-frame quantizer at r = 15 

(b = 750 bits/s) is equal to 2.05 dB. The same ASD value is 

obtained with the LT coding with r = 21, with a bit-rate of 420.5 

bits/s. Thus, the bit saving is here 329.5 out of 750, i.e. 43.9%. For 

r = 11 bits/vector (b = 550 bits/s) the frame-by-frame quantization 

provides 2.68 dB of ASD, while the LT coding provides 2.67 dB 

of ASD at a bit-rate of 256.2 bits/vector (with r = 16 bits/vector). 

Thus, the bit-rate difference is here 293.8 bits/vector and the 

relative gain of the LT coding over frame-by-frame coding reaches 

53.4% in this low resolution region. 

For unvoiced sections, the general trends discussed in the voiced 

case can be retrieved in Fig 4. However, the bit-rate gains are 

generally lower than in the voiced case, although they remain 

significant. For example, the LT coder with r = 17 bits/vectors 

provides 2.22 dB of ASD, with a bit-rate of 394.8 bits/s. The same 

ASD is obtained with the frame-by-frame quantizer with r = 11 

bits/vector (bit-rate = 550 bits/s). The bit-rate gain is thus 155 out 

of 550 (28.2%). Again, larger relative gains are likely to be 

obtained for lower untested resolutions and lower coding quality. 

 

 

Figure 3: Average spectral distortion (ASD) as a function of the average 

bit-rate, calculated on the 4,656 voiced sections of the test database 

(67,080 vectors), and for both the LSF LT coding (series of curves on the 

left) and frame-by-frame LSF quantization (curve on the right). The plotted 

numbers are the resolutions (in bits/vector). For each resolution, the 

different points of each curve on the left cover the range of the ASD target. 

 

 

Figure 4: Same as Fig. 3, but for the unvoiced database (22,101 vectors / 

4,427 sections). 

5. CONCLUSION 
 

As a conclusion it can be noted that a preliminary series of 

listening tests were conducted to confirm the efficiency of the 

long-term quantization of LSF parameters from a subjective point 

of view. Coded signals were generated by filtering the residual 

signal through a synthesis filter derived with LSF parameters 

coded by the two methods, LT coding and frame-by-frame 

quantization, with a similar ASD. These listening tests showed 

that, globally, the preference score was close to 50%-50%, 

indicating that the two methods perform equally on the average. 

Since the signals coded with the LT coding require much less bit-

rates for the same ASD (up to more than 50%), these tests confirm 

the efficiency of the proposed method. More detailed results will 

be reported in further publication. 

Future work will mainly focus on the elaboration of several 

complete speech coders functioning at very- to ultra-low bit-rates 

and exploiting the long-term approach. For such an application, the 

model orders could be further decreased, compared to the results 

presented in the present paper, while preserving acceptable quality. 
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