
PROSODYMODELLING OF SPANISH FOR EXPRESSIVE SPEECH SYNTHESIS

Ignasi Iriondo , Joan Claudi Socoró, Francesc Al´as
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ABSTRACT
This paper presents the use of analogical learning, in par-
ticular case-based reasoning, for the automatic generation of
prosody from text, which is automatically tagged with pro-
sodic features. This is a corpus-based method for quantitative
modelling of prosody to be used in a Spanish text to speech
system. The main objective is the development of a method
for predicting the three main prosodic parameters: the fun-
damental frequency (F0) contour, the segmental duration and
energy. Both objective and subjective experiments have been
conducted in order to evaluate the accuracy of our proposal.

Index Terms— Speech synthesis

1. INTRODUCTION

A text to speech (TTS) system converts a written text into spo-
ken language. TTS research was initially centred on reaching
the greatest degree of intelligibility. Later, the goal has been
to improve the naturalness of synthetic speech, that is to say,
the ability to emulate the complexity of the human speech,
which is intrinsically expressive, since the spoken message
does not only contain verbal content, but also the speaker’s
intention, attitude or emotional state. In this context, the im-
provement of the expressiveness of TTS systems has been
possible thanks to the advances in both prosody modelling
and speech signal processing.
The study of the acoustic correlates of expression is com-

plex and it has been tackled from different approaches (see
[1] for an extensive comparative study). We can distinguish
between studies centred on the voice quality or the paralin-
guistic use of the prosody [2, 3]. Expressive speech syn-
thesis from tagged text requires the automatic generation of
prosodic parameters related to the emotion/style and a syn-
thesis module able to generate high quality speech with the
appropriate prosody and the voice quality. The predominant
TTS technique is based on unit selection [4].
This paper presents case-based reasoning (CBR) [5] —a

machine learning (ML) method— applied to the automatic
generation of prosodic parameters (fundamental frequency,
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phone duration and rms energy) for expressive speech syn-
thesis in Castilian Spanish. Therefore, the presented approach
and results are focused on the prosodic component of expres-
sive speech. With this purpose, an acted expressive female
speech corpus has been developed, which is also used in the
concatenative speech synthesis process. The objective mea-
sures used to evaluate the accuracy of the prosodic modelling
are the root mean square error (RMSE) and the correlation
coef cient (ρ). The subjective performance of the method
has been evaluated by means of a perceptual test using the
Comparative Mean Opinion Scale (CMOS). A time domain
PSOLA-like technique [6] was used to modify waveforms ac-
cording to the new pitch and duration values, while a gain
function was used to set the correct energy values.

2. RELATED WORK

The parameters that determine the prosody of a spoken text
are essentially the segmental duration and intensity, the pause
placement and duration and the F0 contour [7]. In the TTS
framework, the literature on prosodic modelling is very ex-
tensive. The intonation contour has been the most studied
feature, distinguishing between quantitative (as TILT [8], Fu-
jisaki [9] or Bezier [10]) and qualitative methods (ToBI [11]
or Intsint [12]). The segmental duration modelling has been
tackled by rule-basedmethods [13] or statistical methods such
as neural networks [14] or classi cation and regression trees
(CART) [15]. The intensity modelling is the least present in
the literature although there are some speci c works in this
direction such as [16, 17].
Modelling segmental duration of speech requires the def-

inition of a basic speech unit. In most studies (i.e. [18, 19]),
the phone has been chosen as basic unit for the duration, al-
though other basic units could be used such as syllables [14].
In natural speech, the segmental duration varies depending
on the context where it is tted in. The common used fea-
tures that in uence the segmental duration of speech are: i)
the identity of the current, previous and next phoneme, being
possible to use directly their identi ers or a nite set of char-
acteristics such as vowel/consonant, the mode or the place of
articulation and sonority; ii) information related to the stress;
and iii) information about the position of the phoneme within
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a superior unit (syllable or phrase).
The prediction of the intensity contour is usually carried

out at phoneme or syllable level. The features to consider for
its modelling [7] are also related to the segment identity, its
stress and its placement.
In [10], Escudero presents a complete state-of-the-art of

the most used units of intonation in Spanish and the features
that characterize them. There are different kinds of units used
to model the intonation contour: the syllable or smaller units
(microintonation), the stress group (SG) -related to rhythm-,
the intonation group (IG) and other superior units (i.e. plan-
ning of the speech). Common features used for pitch mod-
elling are the type of IG, the placement of SG in the IG, the
position of the stressed syllable and the number of syllables
of the SG and IG. Moreover, the intonation contour of ev-
ery unit can be quantitatively modeled by different functions
(polynomials, Bezier functions [10], logarithmic).

3. OUR APPROACH

3.1. CBR applied to prosody modelling

In this work, we present a new approach based on CBR since
this analogical learning method allows a simple treatment of
discrete and numerical attributes (without discretization) and
numeric array classes (the parameters to be predicted). CBR
has been formalized as a four-step process, named the 4R
CBR cycle —Retrieve, Reuse, Revise and Retain— [5]. In
the following paragraphs, the adaptation of these steps to the
prosodic modelling is explained.
Initialization of the system is not properly a phase of the

4R CBR cycle, but it will be essential to obtain the memory of
cases. Data compression and data delity should be properly
balanced in order to generate the database (memory of cases).
First of all, it is necessary to identify the attributes (or fea-
tures) that de ne the cases for each one of the three system’s
tasks (the prediction of phone duration, phone energy and
the intonation contour). Then, the training set is generated
by joining the prosodic parameters annotated in the speech
corpus with the prosodic features extracted from the linguis-
tic analysis of the text. The reduction of cases is achieved
through a clustering of the classes that are represented by the
same attributes.
The aim of the Retrieve step is to map the solution from

the previous cases to the target problem. The most similar
case (or k cases) is recovered from the database using an ade-
quate metric to the selected attributes. Reuse tries to solve the
new case by reusing the information stored in the database.
First of all, phoneme durations are predicted, since F0 con-
tours have been stored after time normalization. Once the
durations of the phonemes have been computed, the tempo-
rary axis is expanded and thus it is possible to associate the
predicted mean F0 of every phoneme as the evaluation of the
polynomial in the middle of the phoneme. If more than one

sample (k > 1) is retrieved, it will be necessary to select only
one solution. In the current implementation, the CBR Revise
is not required since the storage (Retain) is already realized
only in the initialization. Therefore, the system does not have
the possibility of adding new cases when it is running.

3.2. Prosody representation

The automatic extraction of prosodic features from text is
achieved by means of our linguistic analysis tool that carries
out the phonetic transcription of the text (SAMPA), annotat-
ing intonation groups (IG), stress groups (SG), words and syl-
lables. The IG in Spanish is de ned as a structure of coherent
intonation that does not include any major prosodic break.
Prosodic breaks take place due to pauses or signi cant in ec-
tions of the F0 contour. Up to now, we are only considering
the breaks de ned by the signs of punctuation. The SG is
de ned as a stressed word preceded, if appearing, by one or
more unstressed words. After evaluating different con gu-
rations of attributes, the best results with objective measures
have been achieved with the set showed in Table 1, that de-
picts the label, a brief description and the type1 of attribute.
For segmental duration and energy modelling, the phone has

Table 1. Prosodic features for duration, energy and F0.

Label Features for duration prediction Type
PHON0 Previous phoneme D
PHON1 Current phoneme D
PHON2 Next phoneme D
STRESS Stressed phoneme B
SG-in-IG Position of SG into IG D
PHON-in-IG Position of PHON1 in IG D
DURATION Phone duration inms N
Label Features for energy prediction Type
PHON Current phoneme D
STRESS Stressed phoneme B
SG-in-IG Position of SG into IG D
PHON-in-IG Position of PHON in IG D
PHON-in-SG Position of PHON in SG D
ENERGY Phone energy in rms N
Label Features for F0 contour prediction Type

IG-TYPE: Type of IG D
SG-in-IG Position of SG into IG D
STRESS Position of the stressed syllable D
IG-in-SEN Position of SG in the sentence D
SYL-NUM Number of syllables of SG N

F0 Polynomial coef cients of F0 contour A

been chosen the basic acoustic unit (as [18, 19]). The du-
ration of the phone depends on basically its identity and the
context where it is placed. Similar attributes have been used
for energy (see Table 1).

1(D) discret, (B) binary, (N) numeric, (A) numeric array
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For the F0 contour modelling, the SG has been chosen
following the proposal of [10]. The SG incorporates the in-
uence of the syllable (it includes one stressed syllable plus
some unstressed ones) and the pitch structure at IG level is
achieved by the concatenation of SG contours. However, this
model lacks variations due to microintonation. Up to now, we
only differentiate between declarative, exclamatory and in-
terrogative IGs, which are easy to annotate from punctuation
signs. STRESS indicates the placement of the tonic syllable
in the SG. The number of syllables is related to the length of
the SG (see table 1).
A quantitative representation of the intonation has been

used, by means of the coef cients of the polynomial that min-
imizes the error between the original set of points and the
polynomial. Therefore, the class of the intonation parameter
consists of the coef cients of the polynomial that are adjusted
to minimize the distance between the polynomial and a col-
lection of points that represent the value of the average F0 of
every phoneme. This mean value of F0 is referenced to the
centre of the phoneme.

4. EXPERIMENTS AND RESULTS

The experimentswere performedusing a tieringmulti-domain
Spanish speech corpus (2.5h) [20] recorded by a female pro-
fessional speaker from an advertising database including enun-
tiative, interrogative and exclamative sentences. This corpus
consists of 2590 sentences, which are grouped into three dif-
ferent domains: education (916 sentences), technology (833
sentences) and cosmetics (841 sentences). Each domain has
been recorded using a prede ned speaking style: happy (HAP),
neutral (NEU) and sensual (SEN) respectively. Recently, we
have added two new styles: anger and sadness, which are be-
ing now in process of segmentation and annotation.

4.1. Objective evaluation

The evaluation of the presented method has been conducted
by means of objective measures as the root mean squared er-
ror (RMSE) and the correlation coef cient (ρ). The 75% of
the speech corpus has been used for training the model and
the rest for test. The mean values of both measures for the
three styles (NEU, HAP and SEN) are shown in Table 2. En-
ergy and duration present good results for the three styles, be-
ing SEN the worst rated style. For F0 prediction, the method
seems to fail in HAP due to it is the style that presents the
highest variability (NEU: μ=167 Hz, std=40.9; SEN: μ=134
Hz, std=26.1; HAP: 271 Hz, std=89.1).

4.2. Subjective evaluation

The experiment was set up as a Comparative Mean Opinion
Score (CMOS) test. Nine subjects were asked to listen to
the pairs of sentences (14 for NEU, 13 for SEN and 16 for

Table 2. Mean values of the objective measures for the test
corpus separted by styles.

F0 (Hz) Duration (msec) Energy (rms)
Style RMSE ρ RMSE ρ RMSE ρ

NEU 30,55 0,71 21,91 0,70 0,022 0,85
HAP 73,25 0,51 26,48 0,75 0,026 0,77
SEN 22,33 0,40 29,00 0,64 0,030 0,68

HAP) and rate the similarity of both prosodies (natural and
synthetic) on a ve-point scale. The subject had to choose one
answer from: (5) Very High, (4) High, (3) Certain, (2) Little,
(1) No similarity. During the experiment, subjects were asked
to pay attention mainly in the prosody and they could repeat
the stimuli for many times until a selection was made. Both
utterances were re-synthesized using a TD-PSOLA technique
[6] to modify waveforms according to the input pitch and du-
ration values, while a gain function was used to set the correct
energy values. Input values for natural prosody (NP) utter-
ances were extracted from the mean F0, duration and energy
annotated for each phone in the test speech corpus. Synthetic
prosody (SP) was computed by the proposed CBR method.
The total time for the full test was about 25 minutes.
Figure 1 shows the percentage of CMOS punctuation for

the three styles. Notice that adding the best scores (Very high
and High similarity) the results are very good for NEU (>
55%) and SEN (> 72%), and acceptable for HAP (> 38%).
The worst scores (Little or no similarity) are low rated: NEU
(< 14%), SEN (< 6%) and HAP (< 16%).
Figure 2 shows the resulting box plots of the CMOS pun-

tuation for each style (also is indicated the mean and stan-
dard deviation). From the mean values of the CMOS test,
SEN is the best rated style, followed by NEU and HAP the
worst. The analysis of variance (ANOVA) for the 3 styles
showed statistical signi cance of these mean CMOS results
with F (2, 386) = 27.61, p < 0.0001. Note the correlation
of this subjective measure with the RMSE for F0 (objective
measure) shown in Table 2.

5. CONCLUSION AND FUTUREWORK

An adaptation of CBR has been done for predicting the dura-
tion, the F0 and the energy of the phonemes transcribed from
text, that are the input to the synthesis module in our TTS
system. The conducted objective and subjective experiments
show good preliminary results for the major part of the task,
but fails in the prediction of FO contour for happyness.
As future work, we want to explore the use of new prosodic

features and the representation of F0 in order to improve the
results, especially for happy style. Moreover, the in uence
of database clustering will be investigated. It also requires
the improvement of the Retrieve step (recovering k solutions)
and the development of a selection method to choose the nal
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(HAP)

Very High

5.56%
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(SEN)

Certain

22,31%

Little

5,38%
Very High

42,31%

Nothing

0,00%

High

30,00%

Fig. 1. Similarity percentage between natural and synthetic prosody obtained with the perceptual test for the three styles.

solution from the best candidates list.
Finally, two new emotions (sadness and anger) will be in-

cluded in the modelling and, therefore, a more complete set
of emotions will be tested.

HAP NEU SEN
1

1.5

2

2.5

3

3.5

4

4.5

5

μ=3.32
std=0.92

μ=3.46
std=0.80

μ=4.11
std=0.93

Fig. 2. ANOVA Box plots and the mean and standard devia-
tion of the CMOS scores for each style in the perceptual test.
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