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ABSTRACT

We proposed an environmentally robust speech recognition method
based on Position-Dependent Cepstral Mean Normalization (PD-
CMN) to compensate for channel distortion depending on speaker
position. PDCMN can ef ciently compensate for the channel trans-
mission characteristics while it cannot normalize speaker variation
because position-dependent cepstral mean does not contain speaker
characteristics. Conventional CMN can compensate for the speaker
variation while it cannot obtain good recognition performance for
short utterances. In this paper, we propose a robust distant speech
recognition by combining position-dependent CMN with the con-
ventional CMN to address the above problems. The position-
dependent cepstral mean is linearly combined with conventional cep-
stral mean with following two types of processing. The rst method
is to use a xed weighting coef cient over whole test data to obtain
the combinational CMN, which is called xed-weight combinational
CMN. The second method is to calculate the output probability of
multiple features compensated by a variable weighting coef cient at
each frame, and a single decoder using these output probabilities is
used to perform speech recognition, which is called variable-weight
combinational CMN. We conducted the experiments of our proposed
method using small vocabulary (100 words) distant isolated word
recognition in a real environment. The proposed variable-weight
combinational CMN method achieved a relative error reduction rate
of 56.3% from conventional CMN and 22.2% from PDCMN, respec-
tively.

Index Terms— Robust speech recognition, distant-talking en-
vironments, position-dependent CMN, conventional CMN, multiple
microphone processing

1. INTRODUCTION

Automatic speech recognition (ASR) systems are known to perform
reasonably well when the speech signals are captured by a close-
talking microphone. However, there are many environments where
the use of close-talking microphone is undesirable for reasons of
safety or convenience. Hands-free speech communication [2, 3] has
been more and more popular in some special environments such as
an of ce or a cabin of a car. Unfortunately, in a distant environ-
ment, channel distortion may drastically degrade speech recognition
performance. This is mostly caused by the mismatch between the
practical environment and the training environment.

Compensating an input feature is the main way to reduce a mis-
match. Cepstral Mean Normalization (CMN) has been used to re-
duce channel distortion as a simple and effective way of normal-
izing the feature space [4]. CMN reduces errors caused by the mis-
match between test and training conditions, and it is also very simple
to implement. Thus, it has been adopted in many current systems.
However, the system should wait until the end of speech to activate
the recognition procedure when adopting the conventional CMN [4].

The other problem is that the accurate cepstral mean can not be es-
timated especially when the utterance is short. However, the recog-
nition of short utterances such as commands, city names etc. is very
important in many applications. In [1], we proposed a robust speech
recognition method using a new real-time CMN based on speaker
position, which we call Position-Dependent CMN (PDCMN).

PDCMN can indeed ef ciently compensate for the channel
transmission characteristics depending on speaker position, but it
cannot normalize the speaker variation because position-dependent
cepstral mean does not contain speaker characteristics. On the con-
trary, the conventional CMN can compensate for the speaker varia-
tion. It, however, cannot obtain good recognition performance for
short utterances.

In this paper, we propose a robust distant speech recognition
by combining position-dependent CMN with conventional CMN
to address the above problems. The a priori estimated position-
dependent cepstral mean is linearly combined with utterance-wise
cepstral mean with following two types of combination method. The
rst method is to use a xed weighting coef cient over whole test

data to obtain the combinational CMN, which is called xed-weight
combinational CMN. However, the optimal weight seems to depend
on the the speaker position and the length of the utterance to be rec-
ognized. Thus, a xed weighting coef cient could not obtain the
optimal result. A variable weighting coef cient may obtain a better
performance. A single input feature compensated by the combina-
tional cepstral means with different weighting coef cients generates
multiple input features. Thus, the problem turns to how to obtain the
optimal performance given the multiple input features. Voting on the
different hypotheses generated from the multiple input features has
been studied in [1, 5]. In [6], a new algorithm to select a suitable
channel for speech recognition using the output of the speech recog-
nizer was proposed. All above methods used the output hypotheses
generated by multiple decoders to estimate the nal result.

In our previous study [7], the combination of multiple input
streams at frame level using a single decoder was proposed. A more
robust performance with a lower computational cost was achieved
in compared with the method proposed in [1]. In this paper, we ex-
tend this method to the combinational CMN. The second method
of the combinational CMN is to calculate the output probability of
each input feature at frame level, and a single decoder using these
output probabilities is used to perform speech recognition, which is
called variable-weight combinational CMN. It is very easy to im-
plement in both isolated word recognition systems and continuous
speech recognition systems. Furthermore, the proposed combina-
tional CMN is also integrated with the multiple microphone-array
processing proposed in [7] which uses multiple microphone-arrays
to obtain more robust spatial ltering in a real environment.
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Fig. 1. Room con guration (room size: (W)3 m x (L)3.45 m x
(H)2.6 m)

2. CONVENTIONAL CMN AND PDCMN

Convolutional noise (channel distortion) can be compensated by
CMN in the cepstral domain as:

C̃t = Ct −ΔC, (t = 0, ..., T ). (1)

where C̃t and Ct are compensated and original cepstrums at time
frame t, respectively.

In conventional CMN, the compensation parameter ΔC is ap-
proximated by:

ΔC ≈ C̄t − C̄train, (2)

where C̄t and C̄train are cepstral means of utterances to be recog-
nized and those to be used to train the speaker-independent acousti-
cal models, respectively. This method stands for the assumption that
the test utterance is phonetically well balanced, but the assumption
may not be correct especially when the utterance is short.

We proposed an environmentally robust channel compensation
method called Position-Dependent CMN (PDCMN) [1]. The new
compensation parameter for PDCMN is de ned by:

ΔC = C̄position − C̄train, (3)

where C̄position is the cepstral mean of utterances affected by the
transmission characteristics between a certain position and the mi-
crophone.

In our experiments in Section 5, we divide the room into 12 ar-
eas as Fig. 1 and measure the C̄position corresponding to each area.
The system estimates the speaker position in a 3-D space based on
microphone arrays [8]. The system adopts the compensation param-
eter (that is, C̄position) corresponding to the estimated position and
compensates the distortion using Equations (1) and (3) 1 and per-
forms speech recognition.

1ΔC derived from Equation (2) includes the individual difference of ar-
ticulation and thus compensates the speaker variability. ΔC derived from
Equation (3), on the other side, should be speaker-independent for speaker-
independent recognition system.

3. COMBINING PDCMN WITH CONVENTIONAL CMN

3.1. Fixed-weight combinational CMN

To compensate the channel distortion and speaker characteristics
simultaneously, position-dependent cepstral mean is linearly com-
bined with the conventional cepstral mean. The new compensation
parameter ΔC for combinational CMN is de ned by:

ΔC = λC̄position + (1− λ)C̄t − C̄train, (4)

where λ denotes a weighting coef cient. When using a xed λ to
the whole test data, we call this method xed-weight combinational
CMN.

3.2. Variable-weight combinational CMN

In Section 3.1, a xed weighting coef cient λ is used to combine
PDCMN with the conventional CMN. The effect of the channel
distortion (that is, position-dependent cepstral mean) depends on
speaker position, and the con dence of estimated speaker character-
istics (that is, the conventional cepstral mean) depends on the length
of the utterance. Therefore, the weighting coef cient λ should be
adjusted depending on the speaker position and the length of the ut-
terance. Given a set of variable weights λs, an automatic decision
algorithm of the optimal weighting coef cient λ is required. A sin-
gle input feature compensated by the combinational cepstral means
with different weighting coef cients generates multiple input fea-
tures. Thus, the problem turns to how to obtain the optimal perfor-
mance given the multiple input features.

In our previous study [7], an optimal input decision algorithm
which calculates the output probability of each input stream at frame
level and selects the input with maximum probability as the optimal
input was proposed. We extend and modify this algorithm to the
so-called variable-weight combinational CMN.

For multiple inputs, a conventional Viterbi algorithm [9] is used
for each input stream, k, and the probability α(t, j, k) of the most
likely state sequence at time t which has generated the observation
sequence Ok(1) · · ·Ok(t) (until time t) of k-th input (1 ≤ k ≤ K)
and ends in state j is de ned by:

α(t, j, k) = max
1≤i≤S

{α(t − 1, i, k)aijbj(Ok(t))}, (5)

Ok(t) = C̃t − (λkC̄position + (1− λk)C̄t − C̄train).

where aij = P (st = j|st−1 = i) is the transition probability from
state i to state j, 1 ≤ i, j ≤ S, 2 ≤ t ≤ T ; and bj(Ok(t)) is the out-
put probability for an observation sequence Ok(t) at state j. λk is
the k-th weighting coef cient. In this conventional multiple-decoder
method, the Viterbi algorithm is performed for each input stream
independently, so K (the number of input streams) times computa-
tional complexity is required. Thus, both the calculation of output
probability and the rest of the processing cost such as nding a best
path (state sequence), and so forth, areK times that of a single input.

In order to use a single decoder for multiple inputs, we modify
the Equation (5) as follows:

α(t, j) = max
1≤i≤S

{α(t− 1, i)aij max
k
bj(Ok(t))}. (6)

This method is called single decoder processing. In Equation (6),
the maximum output probability of all K inputs at time t and state
j is used. So only one best state sequence for all K inputs using
the maximum output probability of all K inputs is obtained. This
means that extraK−1 times the calculation of only the output prob-
ability is required compared to that of a single input. Furthermore,
the derivatives of the K input cepstrums compensated by different
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Fig. 2. Microphones’ setup (d = 20 cm)

combinational cepstral means have same values. Thus, the calcula-
tion depending only on the derivatives can be shared with the input
streams.

4. MULTIPLE MICROPHONE-ARRAY PROCESSING

Many microphone array-based speech recognition systems have suc-
cessfully used delay-and-sum processing to improve recognition per-
formance because of its spatial ltering ability and simplicity, so it
remains the method of choice for many array-based speech recog-
nition systems [3, 10]. Beamforming can suppress reverberation for
the speech source of interest. Beams with different properties would
be formed by the array structure, sensor spacing and sensor quality
[10]. The multiple microphone-array processing using the single de-
coder processing described in Section 3.2 could obtain a more robust
performance than a single beamforming [7]. We also integrate the
combinational CMN with multiple microphone-array processing.

In our research, the four microphones are set as shown in Fig.
2. Array 1 (microphone 1, 2, 3), array 2 (microphone 1, 2, 4), ar-
ray 3 (microphone 1, 3, 4), array 4 (microphone 2, 3, 4) and array
5 (microphone 1, 2, 3, 4) are used as individual arrays, and thus
we can obtain 5 channel input streams using delay-and-sum beam-
forming. These streams are used as inputs of the single decoder
processing to obtain the nal result. We call this method multi-
ple microphone-array processing. By combining the combinational
CMN with multiple microphone-array processing, the maximum
output probability at state j for an observation sequence Oc,k(t) of
input stream from the c-th array with k-th weighting coef cient at
time t is b̂j(Oĉ,k̂(t)) = maxc,k bj(Oc,k(t)).

5. EXPERIMENTS

5.1. Experimental setup

We performed the experiments in a room measuring 3.45 m × 3 m
× 2.6 m without additive noise. The room was divided into the 12
(3×4) rectangular areas shown in Figure 1, where the area size is 60
cm × 60 cm. We measured the transmission characteristics (that is,
the cepstral means of utterances recorded a priori) from the center
of each area. In our experiments, the room was set up as the seminar
room with a whiteboard beside the left wall, one table and some
chairs in the center of the room, one TV and some other tables, and
so forth. The reverberation time of the seminar room was about 150
ms. In our past study [8], we revealed that the speaker position could
be estimated with estimation errors of 20–25 cm by the 4 T-shaped
microphone system shown as Fig. 2. In the present study, therefore,
we assumed that the position area was accurately estimated, and we
purely evaluated only our proposed speech recognition methods.

Twenty male speakers uttered 200 isolated Japanese words to
a close-microphone. The average time of all utterances was about

Table 1. Baseline recognition result (%)
W/o CMN Conv. CMN PICMN PDCMN

91.4 93.6 96.1 96.4

0.6 second. For the utterances of each speaker, the rst 100
words were used as test data and the rest for estimation of cep-
stral mean C̄position in Equation (3). The same compensation pa-
rameters (C̄position) were used for all 20 speakers (that is, speaker-
independent). All the utterances were emitted from a loudspeaker
located in the center of each area and recorded for test and estima-
tion of C̄position to simulate the utterances spoken at various posi-
tions. The sampling frequency was 12 kHz. The frame length was
21.3 ms, and the frame shift was 8 ms with a 256 point Hamming
window. Then, 116 Japanese speaker-independent syllable-based
HMMs (strictly speaking, mora-unit HMMs [11]) were trained using
27992 utterances read by 175 male speakers (JNAS corpus). Each
continuous-density HMM had 5 states, 4 with pdfs of output prob-
ability. Each pdf consisted of 4 Gaussians with full-covariance ma-
trices, which correspond to about 32 Gaussions with diagonal co-
variance matrices. The feature space was comprised of 10 MFCCs.
First- and second-order derivatives of the cepstrums plus the rst-
and second-order derivatives of the power component were also in-
cluded.

5.2. Experimental results

5.2.1. Baseline result

We conducted the speech recognition experiment of isolated words
emitted by a loudspeaker in a distant environment. The recognition
results of a conventional delay-and-sum beamforming (array 5) are
shown in Table 1.

In Table 1, PDCMN is compared with recognition with-
out CMN, conventional CMN, and PICMN (Position-Independent
CMN). PICMN means the method by which the averaged compensa-
tion parameters over 12 areas were used. Without CMN, the recogni-
tion rate was not good according to the distance between the sound
source and the microphone. Conventional CMN could not obtain
enough improvement because the average duration of all utterances
was too short (about 0.6 second). By compensating the transmission
characteristics using the compensation parameters measured a pri-
ori, both PICMN and PDCMN effectively improved the performance
of speech recognition from W/o CMN and conventional CMN. In
a distant environment, the re ection may be very strong and may
be very different depending on the given areas, so the difference of
transmission characteristics in each area should be very large. In
other words, obstacles caused complex re ection patterns depend-
ing on the speaker positions. The conventional CMN and PDCMN
using the beamforming (array 5) were used as baseline in the follow-
ing sections.

5.2.2. Results for the xed-weight combinational CMN

The recognition results for xed-weight combinational CMN were
shown in Table 2. The range of weighting coef cients was from 0.3
to 0.9 with a step of 0.1. In Table 2, the optimal weighting coef-
cient of each speaker position was different for each other. The

best average performance was obtained when weighting coef cient
λ = 0.5. Since the combinational CMN compensated the channel
distortion and speaker characteristics simultaneously, it achieved a
better performance than the Conv. CMN and the PDCMN. The re-
sult of the combinational CMN achieved a relative error reduction
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Table 3. Comparison of recognition accuracy of individual CMNs with combinational CMN (%)
single Mic. single array multiple arrays

individual CMN combinational CMN individual CMN combinational CMN
Conv. PD- Conv. PD- xed- variable- Conv. PD- xed- variable-
CMN CMN CMN CMN weight weight CMN CMN weight weight

Recognition rate 92.5 95.4 93.6 96.4 96.9 97.2 93.9 96.9 97.3 97.4
Relative computational cost 1.0 1.0 1.0 1.0 1.0 1.26 1.0 3.58 3.58 4.88

Table 2. Recognition results for xed-weight combinational CMN
(%)

weights λ
area 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 97.0 97.3 97.7 97.0 97.3 97.6 97.8
2 97.6 98.0 97.9 98.2 98.4 98.2 98.0
3 97.1 97.6 97.7 97.3 97.8 97.6 97.1
4 96.2 96.8 96.7 96.4 96.0 95.9 95.6
5 97.4 97.5 98.0 97.9 98.2 97.4 97.5
6 97.2 97.7 97.7 97.4 97.7 97.6 97.4
7 96.3 96.4 96.9 96.8 96.7 96.9 96.6
8 95.5 95.9 96.2 95.8 95.9 95.7 96.2
9 96.5 97.1 97.2 96.8 96.6 97.0 96.9
10 94.8 95.1 95.4 95.1 94.5 95.4 95.2
11 95.2 95.7 95.8 96.1 95.8 95.9 95.5
12 94.8 94.5 95.2 95.1 95.0 95.2 94.8

Ave. 96.3 96.6 96.9 96.7 96.7 96.7 96.5

rate of 51.6% from the Conv. CMN and 13.9% from the PDCMN,
respectively.

5.2.3. Results for the variable-weight combinational CMN

We also conducted the experiment for the variable-weight combina-
tional CMN. The recognition results of the variable-weight combina-
tional CMN were compared with those of individual CMNs in Table
3. K was set as 3, that is, λ1, λ2, and λ3 were set as 0.4, 0.5, and
0.6, respectively. The variable-weight combinational CMN selected
the optimal weighting coef cient at each frame in an utterance, so
it worked better than the xed-weight combinational CMN (relative
error reduction rate of 9.7%).

The multiple microphone-array processing described in Section
4 was also conducted and incorporated into the combinational CMN.
The result of PDCMN using multiple arrays achieved 0.5% improve-
ment over that using a single array. By integrating the combinational
CMN with multiple arrays, more improvement was achieved. The
proposed variable-weight combinational CMN using multiple arrays
achieved a relative error reduction of 59.4% from the conventional
CMN using a single array and 27.8% from PDCMN using a single
array, respectively.

We also compared the computational costs among the methods
in Table 3. As described in Section 3.2, the computational cost of
variable-weight combinational CMN was less than that of multiple
arrays because the calculation of the output probability for deriva-
tives of the input cepstrums was same for different weighting coef -
cients in variable-weight combinational CMN. Using a single array,
the proposed variable-weight combinational CMN achieved a rela-
tive error reduction of 56.3% from the conventional CMN and 22.2%
from PDCMN at only 1.26 times the computational cost.

6. CONCLUSION

In this paper, we proposed a robust distant speech recognition by
combining position-dependent CMN with the conventional CMN.
Two combination methods were proposed. The rst was to use a
xed weighting coef cient over whole test data to obtain the combi-

national CMN, which was called xed-weight combinational CMN.
The second was to use the maximum output probability among those
from multiple features compensated by variable weighting coef -
cients at each frame, and a single decoder used this output proba-
bility, which was called variable-weight combinational CMN. The
proposed combinational CMNs were also integrated with the multi-
ple microphone-array processing. The experiment was conducted on
small vocabulary distant isolated word recognition in a realistic envi-
ronment. The proposed variable-weight combinational CMN using
multiple arrays achieved a relative error reduction of 59.4% from
the conventional CMN using single array and 27.8% from PDCMN
using a single array, respectively.
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