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ABSTRACT
A segmentation posterior probability based endpointing algorithm
for robust ASR is proposed. First, each speech signal is partitioned
into homogeneous segments via auto-segmentation. Then posterior
probabilities of all possible endpoints are computed, based on the
segmentation likelihoods of all levels in a selected range. Endpoints
with the highest posterior probabilities are nally selected. The new
method differs from the previous auto-segmentation and clustering
based algorithm on that the former considers hypotheses from sev-
eral levels, while the latter depends only on one appropriate level.
Another potential bene t of the proposed method is that any end-
pointing or VAD results can be integrated, as hypotheses, into the
posterior probability framework. Experiments based on the AU-
RORA2 digit database show the robustness of the proposed method.

Index Terms— Speech recognition, endpointing, VAD, auto-
segmentation, posterior probability

1. INTRODUCTION

Endpointing or voice activity detection (VAD) is a key component
in speech recognition systems. First, in order to improve the per-
formance of the speech recognition systems under adverse environ-
ments, various noise reduction algorithms have been proposed. In
fact, most of these algorithms especially the single microphone based
methods such as Wiener ltering (WF) and Spectral Substation (SS)
often require an estimate of the noise statistics by means of a precise
VAD. Second, frame dropping (FD) is frequently used to reduce the
number of insertion errors in speech recognition. Since it is based
on the VAD, speech frames incorrectly labeled as silence causes un-
recoverable deletion errors, and silence frames incorrectly labeled as
speech could increase the insertion errors.

Unfortunately the performance of most of the current VAD al-
gorithms decreases greatly when the background noise is high. Thus
a lot of researchers focus on the lower SNR environment. Meth-
ods being proposed include higher-order statistics [1], combinations
of different features [2], using long-term information [3], using or-
der statistic lters [4], and so on. The European Telecommuni-
cation Standards Institute (ETSI) also approved the new standard
for feature extraction and distributed speech recognition (DSR) in
2002. The advanced front-end (AFE) [5] block in the standard pro-
posed different VAD methods for Wiener ltering speech enhance-
ment (WF AFE VAD) and non-speech frame dropping (FD AFE
VAD).

An auto-segmentation based endpointing algorithm is proposed
by Yu et al recently [6][7]. The algorithm consists of two successive
steps: (1) homogeneous segment partitioning and (2) segment clus-
tering. In the rst step, the algorithm divides a time series into homo-

geneous partitions via a level building dynamic programming (DP).
Then the optimal level is found according to the segmentation ho-
mogeneity penalized by segmentation complexity. The second step
groups the segments into two clusters: speech and background noise,
and nally endpoints are easily obtained. The algorithm considers
long-term information and outperforms the AFE VADs under lower
SNRs. However the method only chooses the optimal level and ne-
glects other levels’ information which is also helpful to determine
the endpoints in some sense.

In this paper a posterior probability method is proposed to in-
corporate the useful information from other levels. With the seg-
mentation likelihood of each level, endpoints can be found with the
maximum posterior probability criterion. And more important, the
method has a potential to integrate any endpointing or VAD results
into the posterior probability framework. Experiments based on the
AURORA2 database show that the method is better than the AFE
VADs and is comparable to the old clustering based method in terms
of speech recognition performance.

2. AUTO-SEGMENTATION AND LEVEL BUILDING

For a given time interval I = {n, n = 1, . . . , N} which contains N
frames of speech and a prede ned parameter L (1 ≤ L ≤ N ) which
represents the total number of segments to be produced, segmenta-
tion S(N,L) is de ned as a set of L blocks

S(N,L) = {Sk, k = 1, . . . , L} (1)

where each block is a set of frames represented by consecutive time
indices Sk = {nk−1+1, . . . , nk} satisfying the nonoverlapping and
nonskipping conditions

�
k Sk = I and Sk

�
Sk′ = ∅ if k �= k′.

Here nk is the end frame of segment Sk.
The segmentation homogeneity criterion is de ned as

H(N,L) =

L�

k=1

D(nk−1 + 1, nk) (2)

where D(nk−1+1, nk) indicates a measure function of homogene-
ity associated with segment k positioned from frame nk−1+1 to nk,
which is de ned as the within-segment distortion as in [6] and [7].
An optimal segmentation S∗(N,L) can be obtained by minimizing
H(N,L) over all segment boundaries:

S∗(N,L) = argmin
S,|S|=L

H(N,L) (3)

H∗(N,L) = min
S,|S|=L

H(N,L) (4)
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The search procedure is implemented similar to the level build-
ing DP algorithm [8], i.e., the lth level has l segments. For a particu-
lar frame n, 1 ≤ n ≤ N , and level l, 1 ≤ l ≤ L, de ning H∗(n, l)
as the distortion of the optimal partition up to frame n at level l and
m∗(n, l) as the ending location of the next-to-last segment of the
optimal partition up to frame n at level l, we have the recurrence
equation as:

H∗(n, l) = min
l−1≤j<n

{H∗(j, l − 1) +D(j + 1, n)} (5)

m∗(n, l) = argmin
l−1≤j<n

{H∗(j, l − 1) +D(j + 1, n)} (6)

The optimal segment boundaries at level l will be obtained via trac-
ing back from nl = N using back pointers led by m∗(N, l).

The level building process will repeat until the maximum level
L is reached. Fig. 1 shows two examples of the result. The verti-
cal dashed lines denote segment boundaries at each level. From the
gure, we will see that the endpoints at certain levels are very stable

and consistent, even if the speech is corrupted by noise.
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Fig. 1. Level building examples.

3. POSTERIOR PROBABILITY BASED ENDPOINTING

For a given level l and segment k, 1 ≤ k ≤ l, we can obtain the cen-
troid �μl,k and covariance matrix Σl,k from the level building results.
Thus the likelihood for the nth frame, nl,k−1 + 1 ≤ n ≤ nl,k, of d-
dimensional feature vector �xn belonging to the segment is calculated
as:

P (�xn|l, k) = N (�xn; �μl,k,Σl,k), nl,k−1 + 1 ≤ n ≤ nl,k (7)

where N (�x; �μ,Σ) denotes a normal distribution with mean �μ and
covariance matrix Σ, nl,k denotes the end frame of the segment.
In this paper, we assume that the covariance matrix is an identity

matrix, i.e., Σl,k = I. Then we have the likelihood of the segment
(l, k) and the likelihood of the whole speech signal in level l as:

P (X
nl,k

nl,k−1+1|l, k) =
nl,k�

n=nl,k−1+1

P (�xn|l, k) (8)

P (XN
1 |l) =

l�

k=1

P (X
nl,k

nl,k−1+1|l, k) (9)

From Fig. 1 we found that the endpoints of different levels are
quite similar to N-best list, which is often used in post-processing of
ASR systems and contains the N most likely hypotheses generated
by a preliminary pass of search. In ASR systems, given the N-best
output, the posterior probability of a speci c word can be estimated
by summing up the posterior probabilities of all string hypotheses
that contain the word with the same starting and ending time [9].
Similarly, in the proposed endpointing algorithm, for a certain end-
point, its posterior probability can be estimated by summing up the
posterior probabilities of a selected range of levels (lmin ≤ l ≤
lmax) that contain the similar endpoint:

P (nstart point|XN
1 ) =

lmax�
l=lmin

if nl,1≈nstart point

P (XN
1 |l)α

lmax�
l=lmin

P (XN
1 |l)α

(10)

P (nend point|XN
1 ) =

lmax�
l=lmin

if nl,l−1+1≈nend point

P (XN
1 |l)α

lmax�
l=lmin

P (XN
1 |l)α

(11)

where Equation (10) is for start point and Equation (11) is for end
point. α denotes an exponential weight and can be trained on a train-
ing set.

In the above equations, lmin and lmax are parameters having to
be decided. Experiments show that lmin = 4 can get satis ed results.
However lmax affects the posterior probability much more. First,
lmax should be large enough to take levels with correct endpoint into
the hypothesis list. On the other hand, lmax should not be too large,
otherwise many incorrect hypotheses which have higher posterior
probabilities may be taken into consideration. This will do harm to
the endpoint detection.

Intuitively we think that lmax is related to both speech length
and segmentation complexity. Therefore a penalty related to them is
added to the optimal segmentation score at each level to balance the
homogeneity and complexity:

F (N, l) = H∗(N, l) + λP (N, l), 1 ≤ l ≤ L (12)

where λ is a penalty weight and

P (N, l) = #(N, l) log(N) (13)

denotes the penalty term, and #(N, l) indicates the number of pa-
rameters in the segmentation. For minimum segmentation distortion
criterion and d-dimensional feature vector, it can be calculated as
#(N, l) = l×d. Then lmax can be obtained by minimizing F (N, l)
over all levels:
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lmax = argmin
1≤l≤L

F (N, l) (14)

The penalty weight is chosen to minimize the mean square error
of the estimated lmax over the training set as:

λ∗ = argmin
λ

�

i∈training set

(lmax(i)− li)
2 (15)

where li denotes the maximum level whose endpoint is correct asso-
ciated with the ith sample.

4. EXPERIMENTAL RESULTS

Receiver operating characteristic (ROC) curves and speech recogni-
tion results based on the AURORA2 database were used to verify the
performance of the proposed algorithm. (α = 0.006, λ = 0.32) and
(α = 0.0002, λ = 0.1105) are parameters for start and end point
detection, respectively.

4.1. Receiver operating characteristic curves

First, the endpoint detection method was evaluated by means of
the ROC curves, which can completely describe endpointing perfor-
mance. The non-speech hit-rate (HR0) and speech hit-rate (HR1)
are de ned as the fraction of all actual pause or speech frames that
are correctly detected as pause or speech frames, respectively:

HR0 =
C(0|0)
Cref(0)

, HR1 =
C(1|1)
Cref(1)

(16)

where Cref(0) and Cref(1) are the counts of real non-speech and
speech frames in the whole database, respectively, while C(0|0)
and C(1|1) are the counts of non-speech and speech frames cor-
rectly classi ed. The “real” speech frames and “real” speech pauses
were determined by aligning clean test data to a set of HMM models
trained on clean data in both training and test sets in the database.

HR0 and FAR0 (FAR0 = 100 − HR1), the non-speech false-
alarm rate, were determined in each noise condition for the proposed
endpointing algorithm. HR0 as a function of FAR0 for different
hangovers is shown in Fig. 2. (Hangover is the appended time dura-
tion to the period in which voice activity is detected. It is commonly
used in voice activity detector to produce an extended voice detec-
tion period to avoid extending noise spikes.) The results are aver-
aged values over all noise types and SNR levels. Operating points
of the AFE VADs and operating point chosen for speech recogni-
tion are also included. In the gure, each solid line represents one
start point hangover, while each dotted line represents one end point
hangover. Different colors represent different hangover values, i.e.,
color blue, green, red, cyan and magenta represent hangovers of 0.2,
0.15, 0.1 0.05, 0.0 sec, respectively. It can be derived from the g-
ure that the posterior probability based endpointing yields a compro-
mise between the low FAR0 and the low HR0 as to FD AFE VAD
and WF AFE VAD. Since frame dropping affect the speech recog-
nition much, the low FAR0 is more important. Thus the operating
point chosen for speech recognition usually has a slight lower HR0

a much lower FAR0 than WF AFE VAD.

4.2. In uence of endpoint detection on speech recognition

As illustrated before, noise detection is playing two important roles
in speech recognition in adverse environments. In noise reduction,
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Fig. 2. ROC curves.

since noise parameters such as its spectrum are updated during non-
speech periods, a good noise detection algorithm is critical for an
effective estimation of noise that is required by speech enhancement
systems. On the other hand, non-speech frame dropping is strongly
in uenced by the performance of the detector in effectively reducing
the number of insertion errors caused by the noise but not leading to
too many irrecoverable deletion errors caused by speech misclassi-
cation errors. Thus, an effective endpointing algorithm for robust

speech recognition needs a compromise between speech and non-
speech detection accuracy.

The recognition experiments were performed based on the AU-
RORA2 database [10]. Since few silences exists between speeches,
endpoint detection is enough for noise estimation and noise frame
dropping. The reference front-end (baseline) is what was used in
the ETSI AURORA project for DSR [11]. The AFE features were
extracted by means of the ETSI software [12]. We only used clean
training in our analysis.

In order to compare the proposed method to the AFE standard,
the VADs of the full standard (including both the noise estimation
VAD and frame dropping VAD) were replaced by the proposed end-
pointing method. Results associated with the HMM based endpoints
(reference) and auto-segmentation and clustering based endpoints
[7] were also provided. All results were averaged over the three
test sets of the AURORA2 recognition experiments. More clearly,
the experiment structure is:

1. replace the WF VAD of the AFE standard and do not perform
frame dropping

2. replace the FD VAD of the full AFE standard
3. replace both WF and FD VADs of the full AFE standard

The same feature extraction scheme was used for both training and
testing. If FD is utilized, exact speech periods expanded by a small
time duration, rather than only the exact speech periods as in [7],
were kept and consequently, all the frames out of the periods were
discarded. The expanded minor duration is necessary for silence
model training.

Table 1 to 3 exhibit all recognition results in the clean train-
ing. In the tables, “AC” means the auto segmentation and cluster-
ing based endpointing method, while “PP” represents the proposed
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posterior probability based method. Note that AFE standard uses
different VADs for noise suppression and frame dropping. Table 1
demonstrates the performance of noise reduction scheme in robust
speech recognition. The four methods have a similar performance.
PP performed even a little bit better than REF. This may due to the
inaccuracy of the HMM based endpoints. Table 2 shows the recog-
nition results of the full AFE standard and the modi ed standard via
only replacing the FD VAD by others. The word error rate was re-
duced from 14.0% to 13.5% when AC was used and 12.8% word
error rate was got when PP was used. This shows the effectiveness
of the posterior probability based algorithm. Table 3 shows the ex-
perimental results of the full AFE standard and the modi ed standard
via replacing both WF and FD VADs by others. Both REF and AC
achieved an absolute improvement of 0.4%, while PP got the similar
results as in Table 2. However, the relative improvement of PP is
still about 8.6% as to AFE, and PP still performed better than AC.

Table 1. Comparison of four methods for noise suppression in AFE.
System AFE without FD

VAD (WF) REF AFE AC PP
Clean 99.1 99.1 99.1 99.1
20 dB 98.1 98.0 98.0 98.0
15 dB 96.6 96.4 96.5 96.5
10 dB 92.6 92.3 92.5 92.8
5 dB 82.4 82.2 82.2 82.7
0 dB 58.2 58.0 57.9 59.1
-5 dB 27.4 26.9 27.2 28.3

Avg. (0-20 dB) 85.6 85.4 85.4 85.8

Table 2. Comparison of four methods for frame dropping in AFE.
System full AFE

VADs (WF/FD) AFE/REF AFE/AFE AFE/AC AFE/PP
Clean 99.2 99.2 99.2 99.3
20 dB 98.3 98.1 98.3 98.4
15 dB 97.0 96.7 96.9 97.1
10 dB 93.9 92.8 93.3 93.9
5 dB 85.1 82.9 83.4 84.6
0 dB 63.3 59.6 60.8 61.8
-5 dB 32.2 27.6 29.0 29.4

Avg. (0-20 dB) 87.5 86.0 86.5 87.2

Table 3. Comparison of four methods for full AFE.
System full AFE

VADs (WF/FD) REF/REF AFE/AFE AC/AC PP/PP
Clean 99.3 99.2 99.3 99.4
20 dB 98.4 98.1 98.3 98.4
15 dB 97.1 96.7 97.0 97.2
10 dB 94.1 92.8 93.5 93.8
5 dB 85.3 82.9 83.8 84.6
0 dB 64.4 59.6 61.7 61.8
-5 dB 33.5 27.6 30.5 29.8

Avg. (0-20 dB) 87.9 86.0 86.9 87.2

5. CONCLUSION AND FUTURE WORK

In this paper, we proposed a robust endpoint detection algorithm
based on auto segmentation and maximum posterior probability cri-
terion. Due to the self-segmentation nature, the approach does not

need any noise models, and long-term information extracted from
the segments can be used. On the other hand, since posterior proba-
bility was used, multiple endpoint hypotheses produced by the level
building dynamic programming, or potentially by other endpointing
and VAD algorithms, can be involved. Thus, the method is more ro-
bust to noise. Experiments on the Aurora2 digit database showed
that the proposed method outperformed the AFE standard VADs
when used for WF, FD, and both of them. The reduction of the
word error rate was 8.6% over AFE VADs and 2.3% over previous
auto-segmentation and clustering based method.

During the experiments, we noticed that lmax is a key parameter
in the framework. How to estimate it accurately is not trivial. The
future work would be discovering an ef cient method to select it.
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