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ABSTRACT

We propose a probabilistic model for estimating word con -
dence by fusing predictor features. Starting from the Maxi-
mum Entropy (ME) method, we rst prove that ME model is
equivalent to the best model with certain form to the Mini-
mum Expected Cross Entropy (MECE) criterion. Under the
MECE criterion, We extend the form of ME model by intro-
ducing a hidden state. We call the new model Hidden-State
Maximum Entropy (HSME) model. In a keyword-spotting
task, we combine predictor features from both phonetic and
word-level systems. Compared to lattice posterior alone, re-
call at 80% precision is improved from 38.1% to 49.5% on
voicemail and from 37.1% to 51.9% on Switchboard. Com-
pared with other fusion methods, HSME consistently outper-
forms decision tree, and most cases SVM.

Index Terms— con dence measure, keyword spotting

1. INTRODUCTION

Estimating word con dence is an important topic in speech
recognition. Initially developed for utterance veri cation, con-
dence measures are found useful for many other applica-

tions, such as keyword spotting, spoken document indexing,
and spoken language translation.

We de ne word con dence as the probability of a word
being correctly recognized at a certain location in speech.
Theoretically, it is equivalent to the word posterior probabil-
ity. A common method is to compute word posteriors from
speech recognition lattices [1]. This way, the con dence model
is consistent with the model for speech recognition, thus hav-
ing a strong theoretical basis.

There are two reasons why lattice-posterior based con -
dence measure may not be the best that we can do. First,
the word posterior is theoretically optimum only under the
ideal assumption that speech models are correct. Unfortu-
nately, speech models used today have many approximations
which are known to be incorrect. Most approximations have
little impact on recognition accuracy, but some seriously de-
grade posteriors estimation. Second, lattice posteriors do not

consider additional information that is dif cult to be used in
mainstream speech models like word duration and prosody,
or external information like lip reading and OCR from video.

An alternative is to use predictor features that are infor-
mative to distinguish correctly recognized results from errors.
These predictor features are combined in a certain way to
generate a single score to indicate correctness of the recogni-
tion decisions, e.g., decision tree [2], Support Vector Machine
(SVM) [3], boosting [4], neural network [5].

Most of those feature fusion methods target a veri cation
task – hard correct/incorrect decision. However, soft word
con dence is valuable because:

• in some applications, e.g., keyword spotting, user-re-
quired recall/precision level is not known in advance.
The system must be prepared for all possible require-
ments (instead of being optimized for a single condi-
tion);

• in some applications, e.g., spoken document indexing,
speech recognition results are used as input to succeed-
ing modules. Probabilistic con dence is important for
overall optimization.

In [6], a probabilistic model for feature fusion, named
generalized linear model, was proposed for con dence. In
[7], we proposed to build the probabilistic model under Max-
imum Entropy (ME) criterion, and resulted in the same form
as generalized linear model. On a relative simple phonetic
posterior normalization task, improvement was observed with
the ME model. However, the linear combination form is too
simpli ed to model word correctness off predictor features.

In this paper, we rst re-motivate the use of the ME model
by showing that it is the optimum solution under Minimum
Expected Cross Entropy (MECE) criterion with a certain model
form. We extend the form of ME model by introducing a hid-
den state behind each sample, and optimize under the MECE
criterion. We call the new model Hidden-State Maximum En-
tropy model (HSME). In a keyword-spotting task, we com-
bine predictor features from both a phonetic and a Large-
Vocabulary Continuous Speech Recognition (LVCSR) sys-
tem. Compared to LVCSR lattice posterior alone, recall at
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80% precision is improved from 38.1% to 49.5% on voice-
mail and from 37.1% to 51.9% on Switchboard. Compared
with other fusion methods, HSME consistently outperforms
decision tree, and most cases Support Vector Machine (SVM).

The paper is organized as follows. In section 2 we will re-
capitulate the ME model for con dence measure [7], and will
re-motivate it with MECE criterion. Section 3 introduces the
new HSME model. Section 4 shows the results, and section 5
concludes the paper.

2. MAXIMUM ENTROPY MODEL FOR
CONFIDENCE MEASURE

In our previous work [7], we found Maximum Entropy crite-
rion is useful for posterior re nement in keyword spotting. In
this section, we recapitulate the method.

Let x = (O, ts, te, w) denote a test sample, with obser-
vation O being an audio document, ts, te two time points in
O, and w being a word. Let C be the event “ts and te is
the boundary of one word in O, and the word is w”. The
con dence measure is de ned as the conditional probability
p(C|x).

Now, assume a large number of training samples (xi, Ci),
i = 1, · · · , N . An empirical probability distribution p̃(x,C)
can be estimated from the sample set.

The Maximum Entropy criterion is widely used for model
estimation [8]. With our problem, the optimum p(C|x) under
Maximum Entropy criterion is found by:1

p̂ = argmax
p

{−
∑

x,C

p̃(x,C)p(C|x) log p(C|x)}

s.t.
∑

x

p̃(x)p(C = T |x)�f(x) =
∑

x

p̃(x,C = T )�f(x).(1)

Here �f(x) = (f1(x), · · · , fK(x)) are so-called predictor
features extracted from x.

It is known [8] that the optimum distribution p under ME
can be found by the following equivalent optimization prob-
lem

α̂ = argmax
α

{
∑

x,C

p̃(x,C) logPME(Ci|xi, α)}, (2)

where α is a parameter vector and

p(C|x) = PME(C|x, α) = exp(α · �f(x))
exp(α · �f(x)) + 1

, (3)

which we call Maximum Entropy (ME) model.
An alternative way of writing the objective function in

Eq. 2 is,

Q(α) =
∑

x,C

p̃(x,C) logPME(Ci|xi, α)

=
∑

x

p̃(x)
∑

C

p̃(C|x) logPME(Ci|xi, α)

= −
∑

x

p̃(x)H(p̃(C|x), PME(Ci|xi, α)).

1Eq. 1, 2, and 3 has already been adapted to the speci c two-classes (C =
T/F ) problem for con dence measure. In its raw form, ME can be used to
estimate p(y|x) with y being any random variable.

HereH(p, q) stands for the cross entropy of two probabil-
ity distribution p and q. This shows, the ME model is equiva-
lent to the Minimum Expected Cross Entropy (MECE) model
with the form in Eq. 3.

Eq. 3 also shows, the ME model predicts C by a linear
combination of all features. Experiments show that this is too
simpli ed to model the dependency between C and �f . To
compensate for this, we will introduce an extended version of
ME model in the next section.

3. HIDDEN-STATE MAXIMUM ENTROPY MODEL

We introduce the following assumptions:

• Each sample (x,C) has a hidden state attached, s ∈
{S1, S2, · · · , ST }. The state can be understood as a
group of samples sharing some common properties;

• Samples in one state can be modeled by an individual
exponential model as Eq. 3,

P (C|x, Sl) = P (C|x, αl) =
exp(αl · �f(x))

exp(αl · �f(x)) + 1
;

• The hidden state s can be predicted by x with another
exponential model. It has a similar but slightly different
form with Eq. 3, as it is used for multiple classes2:

P (Sl|x, βT
1 ) =

exp(βl · �f(x))∑T
k=1 exp(βk · �f(x))

.

Combining all of the above, we de ne the Hidden-State
Maximum Entropy (HSME) model:

PHSME(C|x,Δ) =
T∑

l=1

P (C,Sl|x,Δ)

=
T∑

l=1

P (C|x, Sl,Δ)P (Sl|x,Δ)

=
T∑

l=1

P (C|x, αl)P (Sl|x, βT
1 ),

whereΔ = (αT
1 , β

T
1 ) = (α1, · · · , αT , β1, · · · , βT ).

Again, the MECE criterion is used to nd best model:

Δ̂ = argmin
Δ

∑

x

p̃(x)H(p̃(C|x), PHSME(Ci|xi,Δ))

= argmax
Δ

∑

x,C

p̃(x,C) log(PHSME(Ci|xi,Δ)). (4)

Eq. 4 can be solved by an Expectation-Maximization (EM)
algorithm [9], where the objective function in each maximiza-

2Actually one of βl can be xed to 0 without changing the de nition.

IV ­ 786



tion step is

Q(Δ|Δ′)

=
∑

x,C

p̃(x,C)Es|C,x,Δ′ [logP (C, s|x,Δ)]

=
∑

x,C

p̃(x,C)
T∑

l=1

P (Sl|C, x,Δ′) logP (C, Sl|x,Δ)

=
T∑

l=1

∑

x,C

p̃(x,C)P (Sl|C, x,Δ′) logP (C|x, αl)

+
∑

x,C

p̃(x,C)
T∑

l=1

P (Sl|C, x,Δ′) logP (Sl|x, βT
1 ). (5)

And the expectation step calculates

P (Sl|C, x,Δ′) =
P (Sl, C|x,Δ′)

T∑
k=1

P (Sk, C|x,Δ′)

=
P (C|Sl, x, α′

l)P (Sl|x, β′T
1 )

T∑
k=1

P (C|Sk, x, α′
k)P (Sk|x, β′T

1 )
.

Optimization for Eq. 5 can be split into the following sub
problems, each solved by Quasi-Newton methods individu-
ally.

α̂l = argmax
α

∑

x,C

p̃(x,C)P (Sl|C, x,Δ′) logP (C|x, αl)

for l = 1, · · · ,K, and

β̂T
1 =argmax

βT1

∑

x,C

p̃(x,C)
T∑

l=1

P (Sl|C, x,Δ′) logP (Sl|x, βT
1 ).

4. RESULTS

4.1. Setup
We evaluate the above method on a keyword-spotting task.
Predictor features are extracted from both a phonetic recog-
nition and a LVCSR system. We report results by calculating
recall at four precision levels (80%, 60%, 40%, and 20%). For
each precision level, hits for all keywords are put together and
cut off with a shared threshold.

We used two test sets, LDC Voicemail [10], and Switch-
board [11]. Table 1 summaries the setup. The rst block
lists acoustic model training set, acoustic model adaptation,
and language model training set for speech recognizer. The
SWBD training set “SWBD+ICSI+BN” includes transcrip-
tions of SWBD-I, LDC ICSI-meeting training set, and LDC
Broadcast News 96 and 97 training sets. The phonetic recog-
nizer uses a phonetic word-fragment language model as de-
tailed in [12].

Table 1. Corpora summary.
test set LDC Voicemail Switchboard
AM train SWBD-I (309h)
AM adapt VM-I -
LM train VM-I SWBD+ICSI+BN
conf. model train 13.5h from LDC VM-II
dev set 1.5h from LDC VM-II
eval set vmtest (1.5h) RT03S (6.3h)
eval WER 44.4% 55.2%
eval #keywords 3223 2611

The second block (next 3 lines) lists distinct training/dev/
eval sets for the con dence models. vmtest is a also subset of
LDC Voicemail de ned in [13].

A list of keywords are extracted from reference transcripts
for each set by an automatic algorithm [12], example key-
words are pentium, federal-express package, and internet work-
station address request. The number of keywords for eval
sets, together with word error rate for the LVCSR system are
listed in the third block.

4.2. Fusion of Phonetic and LVCSR Features
Our previous work [12], [14], [7] has shown that for the key-
word-spotting task, combining a phonetic and a LVCSR sys-
tem by simply summing up the phonetic and LVCSR poste-
riors results in improvement over each single system. In the
present paper, we use both posteriors as predictor features,
and estimate word con dence with fusion methods.

[7] has also shown phonetic posteriors have a strong de-
pendency on the keyword. Although the unnormalized pos-
teriors is still useful for ranking hits for same keyword, they
are not suitable for a task where a shared threshold is used
across keywords. Also it was found that the phonetic lan-
guage model scores are useful for normalizing the phonetic
posteriors. Thus, we use phonetic language model score as a
separate feature as well.

Table 2 compares keyword-spotting results with variant
features and fusion methods. Recall at different cutoff thresh-
old are given. Sometimes the recall is not available.

The rst three columns list setup no., method and features.
Features used here are phonetic posterior (PPph), phonetic
LM (LMph), and LVCSR posterior (PPwd).

Line 1 is LVCSR baseline using word posteriors alone.
Results with phonetic posteriors alone are not shown as un-
normalized phonetic posteriors are not suitable for this task.

Line 2 and 3 combines PPph and LMph by the ME model
and the HSME model respectively. By this, a somewhat work-
able system can already be built with pure phonetic features.
The ME result was published in [7], and the new HSME model
has a signi cantly better performance.

Line 4 to 8 uses different methods to combine all three
features: PPph, LMph, PPwd. Line 4 is the heuristic we used
in [7], which sums up normalized phonetic posteriors (line 3
here) and PPwd. It shows improvement over PPwd at 20%
precision, while being worse with higher precisions.

The ME model results (line 5) were poor. This re ects
the fact that a linear combination of features is not enough
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Table 2. Keyword-spotting results with different features and different fusion methods. (Rxx for recall in % at xx precision.
Important results boldfaced.)

set: LDC Voicemail Switchboard (“RT03S”)
no. method features R80 R60 R40 R20 R80 R60 R40 R20
1 PPwd 38.1 49.7 56.7 62.0 37.1 48.3 57.1 66.2
2 ME [7] PPph, LMph n/a 8.2 12.6 27.2 1.8 4.9 10.2 21.3
3 HSME PPph, LMph 18.3 36.0 46.6 63.3 21.4 31.5 41.9 57.5
4 posterior sum PPph, LMph, PPwd 17.5 38.0 52.1 73.6 22.1 33.3 44.9 64.9
5 ME PPph, LMph, PPwd n/a 33.2 44.4 62.6 17.7 31.9 46.3 65.5
6 decision tree PPph, LMph, PPwd 46.7 61.4 70.0 81.1 46.4 58.5 66.2 76.9
7 SVM PPph, LMph, PPwd 47.7 64.7 74.9 85.4 51.8 64.1 71.6 80.8
8 HSME PPph, LMph, PPwd 49.5 66.1 75.0 84.7 51.9 63.0 70.8 79.8

for modeling the dependency between word correctness and
predictor features.

The next three lines show results for decision tree, SVM
and HSME respectively. For HSME, 32 states are used (The
number of states has little effect beyond 8 states, as shown in
Fig. 1). HSME is consistently better than the decision tree and
in most cases, especially with high precisions which are more
interesting, better than SVM. Note that, SVM requires sub-
stantial parameter tuning effort and takes signi cant longer
time for testing.

To investigate the physical meaning of HSME states, we
did a HSME training with another phonetic feature NMph:
the number of phonemes in the keyword, comparing with the
HSME model without NMph. Fig. 1 shows recall at 80%
precision w.r.t. number of states used in HSME. Both setups
converge to the same recall with 8 or more states, but with
NMph converges notably faster. This indicates that for no-
NMph setup, states actually learn the information of NMph,
and nally catch up with the system that knowsNMph explic-
itly.

5. CONCLUSION
In this paper, we proposed a novel model-based fusion method
for con dence measure. We rst proved that the best model
for con dence estimation under Maximum Entropy criterion
is equivalent to the best model with given form under Mini-
mum Expected Cross Entropy (MECE) criterion. Then under
the MECE criterion, we extended the form of ME model to
a new model which we call Hidden-State Maximum Entropy
(HSME) model.

We evaluated the new method by a keyword-spotting task
combining features from phonetic and LVCSR systems. Com-
pared with LVCSR lattice posteriors alone, at 80% precision,
recall was improved from 38.1% to 49.5% on LDC Voicemail
set and from 37.1% to 51.9% on Switchboard (“RT03S”).
Compared with other fusion methods, HSME performs con-
sistently better than decision tree, and in most precision levels
better than SVM.
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Fig. 1. Convergence of recall with number of states. Compar-
ing HSME with and without NMph. Recall are calculated on
voicemail test set at 80% precision.
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