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ABSTRACT

Constrained or feature space Maximum LikelihoodLinear Re-
gression (FMLLR) is known to be an effective algorithm for
adaptation to a new speaker or environment. It employs a
single transformation matrix and bias vector to linearly trans-
form the test speaker’s features. FMLLR makes no assump-
tion on the underlying noise, environment or speaker and esti-
mates parameters to maximize likelihood of the test data. The
standard implementation needs considerable computational
power, requires signi cant amounts of storage, and requires
a rst pass decoding before adaptation can begin. In this pa-
per, we propose a simpli ed implementation of FMLLR for
embedded applications to address these problems. Here, we
employ a simple speech/silence segmentation to estimate pa-
rameters. We operate in the 13 dimensional cepstral space,
hence resource requirements are low. The algorithm does not
require a rst pass decoding (parameter estimation is accom-
plished entirely in the front end) and can be applied with low
latency as compared to FMLLR. The algorithms we describe
here provide an attractive tradeoff between the power of FM-
LLR and the computational simplicity of Cepstral Mean Sub-
traction. With minimal cost, we achieve nearly 15% relative
gains on an embedded speech recognition task.

Index Terms— Speech recognition, Speech enhancement

1. INTRODUCTION

Adaptation of system parameters or features to a new speaker
or environment is employed by most of the state of the art
speech recognizers. Several different algorithms are employed
with considerable success to compensate the mismatch due
to a new speaker or environment. These algorithms include,
Cepstral Mean Subtraction (CMS) for compensating for a con-
volutive channel; RASTA for rectifying the channel mismatch;
CDCN for additive noise and convolutive channel compen-
sation; maximum likelihood linear regression (MLLR) or its
contrained version FMLLR, for rectifying speaker variabil-
ity and channel mismatch. FMLLR, unlike other types of
feature adaptation techniques (including CDCN, RASTA or
CMS), there is no assumption on the underlying noise, model
or channel. In FMLLR, the test features are linearly trans-

formed such that the features are better matched to the origi-
nal model. In this paper we are interested in simplifying FM-
LLR so that all the calculations required to estimate the pa-
rameters can be carried out in the front end, without the need
for a rst pass decoding. The other objective we had was to
reduce the amount of computation and memory required to
estimate parameters. We note that Cepstral Mean Subtraction
can be viewed as an extremely simple version of FMLLR,
where we transform the data to match a zero mean Gaussian
model. In this paper we are interested in making a tradeoff
between the simplicity of CMS and the power of FMLLR.

The standard implementation of FMLLR was introduced
in [1]. The af ne transform is estimated by maximizing the
likelihood of the transformed features with respect to the full
speech recognition model assuming that the decoding is cor-
rect. An auxiliary function for the likelihood [1] results in a
fairly ef cient algorithm for parameter estimation. Parame-
ters can also be estimated by direct maximization of likeli-
hood [2] which is less ef cient but more exible. The stan-
dard implementation of FMLLR requires O(n3) operations
per frame to collect statistics, O(n3) space for storage and
O(n4) operations for calculation of the transform matrix. In
standard features space sizes (n is around 50), the computa-
tions required can be prohibitive for commerical speech recog-
nition engines which often run more than 10 times faster than
real time. Since estimation requires decoding results, adap-
tation is not possible for the rst utterance (unless we de-
code twice). Furthermore, the effectiveness of FMLLR is
reduced when there are only a few utterances from a given
speaker/condition. In order to overcome these de ciencies
several different methods are proposed in the literature. One
option is to simplify the transform matrix; using a block di-
agonal [3] or just a diagonal transform matrix. Restricting
the matrix to be in a subspace can be effective in reducing
the amount of data required to estimate the transform [4], [3].
[5] proposes a stochastic gradient estimation technique that is
computationally very ef cient. Although these methods re-
duce the computational load and/or are more stable with rel-
atively small amounts of data, they still require a rst pass
decoding and are still much more expensive than techniques
like CMS.

In this paper we employ a different approach to tackle
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these problems. Instead of maximizing likelihood under the
full speech recognitionmodel, we use a simpli ed model com-
prised solely of speech and silence models. We use speech si-
lence labels generated by a low latency speech detector to split
the data into two classes: speech and silence. For each of the
classes (speech and silence) we build Gaussian mixture mod-
els in the cepstral space, and use these models to calculate the
likelihood of the data. Since we calculate transforms in the
cepstral space, we only deal with 13 dimensional features,
which results in smaller amount of computation. The trans-
form can be estimated and applied before the rst decoding.
We nd that diagonal transforms and even just simple scal-
ing can give signi cant gains. These simple transforms can
be estimated very ef ciently. This can be seen as generaliza-
tion of CMS where a bias is subtracted to make the data zero
mean (Maximization of likelihood assuming the model is zero
mean Gaussian) and cepstral variance normalization (Maxi-
mization of likelihood assuming the model is zero mean unit
variance Gaussian). Increasing the complexity of the model
gives a smooth tradeoff between techniques like FMLLR and
techniques like CMS. We could choose a model which allows
more acoustic classes and not just speech and silence.

The rest of the paper is organized as follows. In Sec-
tion 2, we explain the estimation of the feature transforma-
tion and generation of the speech/silence model. In Section
3, we present the experimental results on several different
databases. We then conclude our paper with some directions
for future research.

2. ALGORITHM DESCRIPTION

If we denote the feature vectors generated for a test speaker
as �xt at time t, then the transformed features are given by

�yt = A�xt +�b,

whereA is the linear transform matrix and�b is the added bias
vector. The transform matrix A and the bias vector �b are es-
timated by maximizing the likelihood of the feature vectors
for a test speaker Y = {�y1, . . . , �yT }, given a corresponding
graph G which speci es the set of allowed state sequences.
The graph used in estimation can be either the full decoding
graph (which is like standard fMLLR) or a reduced silence-
speech graph. We x split the data into two classes and calcu-
late the likelihood of the data models built on the correspond-
ing class. The objective function is given as

l(A,�b) = log
dY

dX
+ P (�yT

1
|G,A,�b).

where Y = {�y1, . . . , �yT } and X = {�x1, . . . , �xT } are the
corresponding transformed and original feature vectors for a
test utterance respectively. We directly optimize this func-
tion by using the limited memory BFGS algorithm [6] with
the More-Thuente line search algorithm [7]. Since we use a

fairly simple speech/silence graph for estimation, it is fairly
ef cient to directly optimize the objective function instead of
using an auxiliary function. In a real application one would
still use the auxilliary function based method [1] for further
gains in ef ciency. This search algorithm requires both com-
putation of the likelihood l and the gradient of the likelihood
with respect to A and �b. If we can calculate the gradient of l
w.r.t. �yt, then we can propagate this gradient using the chain
rule to calculate all the required gradients as follows

dl

dA
=
dl

dY

dY

dA
(1)

and
dl

d�b
=
dl

dY

dY

d�b
(2)

Let G be the set of allowed Gaussian sequences determined by
the speech/silence alignment and the mixture models. Then
we can write

l(A,�b) = logP (Y |G,A,�b) = log
∑

gn∈G

P (gn)P (Y |gn).

The gradient l w.r.t. a given frame �yt is given by

d logP (Y |G)

d�yt
=

log
∑

gn∈G P (g
n)P (Y |gn)

d�yt

=

∑
gn∈G P (g

n)dP (Y |gn)/d�yt∑
gn∈G P (g

n)P (Y |gn)

=
∑

gn∈Gt

γg(t)
d logP (�yt|g)

d�yt

=
∑

gn∈Gt

γg(t)Σ
−1
g (μg − �yt),

where Gt is the set of Gaussians that are allowed at time t
according to the set of Gaussian sequences in G; Σ, μ are the
covariance matrix and the mean vector for the corresponding
Gaussian. Plugging this result in Equations (1) and (2) we get

dg

dA
=
∑

t

∑

g∈Gt

γg(t)Σ
−1
g (μg − �yt)�x

T
t ,

and
dg

d�b
=
∑

t

∑

g∈Gt

γg(t)Σ
−1
g (μg − �yt).

The Jocabian term can be easily calculated as

log | det
dY

dX
| =
∑

t

log | det
d�yt
d�xt

| =
∑

t

log | det(A)|,

since for a simple linear transformation, the Jacobian term
reduces to the determinant of the transform matrix.
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3. SYSTEM

The experiments for this paper are carried on two different
IBM internal databases. The rst database is comprised of
utterances recorded in a car environment at three different
speeds; idling, 30 mph, 60 mph. This database is the primary
test bed for our experiments since we plan to use this algo-
rithm for embedded applications. The tasks in this test set
includes commands, digits, addresses. The second database
is comprised of utterances collected by a telephony deploy-
ment of IBM. For both test sets several different grammars
are used depending on the tasks.

The embedded test set is comprised of 36537 words and
each speaker has nearly 5.2 minutes of data corresponding to
100 utterances per speaker. We test the performance of our al-
gorithm both using a single utterance or all the utterances for
a particular speaker in the optimization algorithm. The train-
ing data for the embedded application is also collected in a car
with three different speeds. Since most of the training data is
collected in a stationary car, extra noise collected in a mov-
ing car is added to simulate noisy data. The database used for
training consisted of 887110 utterances. The baseline acous-
tic model was word internal with 826 states and 10001 diago-
nal Gaussians. The front end is fairly standard; 13 dim MFCC
with mean normalization (max normalization) and delta and
double deltas. The nal feature is then 39 dimensional.

The speech silence models are also generated from the
same training database. The speech silence labels are gen-
erated by using the silence detector of IBM ViaVoice speech
recognition engine. The silence detector is based on the cep-
stral features. The silence detector is part of the front end
and it is computationally cheap and low latency. A GMM
for speech and silence is built from the speech/silence tagged
vectors.

The telephony test set comprised 10126 utterances (ap-
proximately 4.2 hours). The test set has several different tasks
including, yesno, digits, orders and navigation and was col-
lected from several different telephony applications. There is
approximately 2 seconds of data per utterance. All estima-
tion was done using a single utterance since we did not have
speaker boundaries for some of the test data. The base line
acoustic model is left context with 2335 states and 167929 di-
agonal Gaussians. Feature vectors are generated by concete-
nating 9 consecutive MFCC features, which are then trans-
formed to 60 dimensional feature vectors with an LDA trans-
formation. The MFCC features are also normalized with CMS
both at test time and training. We apply our algorithm either
to 13 dimensional MFCC features before LDA or to 60 di-
mensional features after LDA. For these experiments we use
the speech detector described in [8].

4. RESULTS

We rst report results for the embedded test set. For the em-
bedded test set, the base error rate is 1.70. We rst test the
linear transform part of the FMLLR, i.e., only A no �b. In the
rst set of experiments, we use all the data available for each

speaker in estimation of the transform matrix A, i.e., nearly
5.2 minutes of data per speaker. In Table 1, we provide results
when we maximize likelihood of a model with a single Gaus-
sian per class. Since we are transforming the features to match
a simple model (which is different from the model used for
recognition) it is possible that we learn transforms that cause
a degradation in performance. Indeed from Table 1 (row 2)
we see that learning an unconstrained matrix causes the error
rate to go up by a factor of 4. We then tried constraining the
transformA to improve generalization. The best performance
(row 5) is obtained when we constrain A to be diagonal with
all the diagonal entries the same, i.e., A = aI where a ∈ R
and I is the identity matrix of appropriate dimension. In the
result in row 3, we only scale c0 leaving all the other cep-
stral coef cients xed. In row 4, we scale c0 and the rest of
the cepstral coef cients separately with the coef ecients c1 to
c12 sharing the same scale. These results indicate that when
matching to simple models it is best to severly constrain the
transforms.

We then moved to experiments wehere we estimate the
transform based on only one utterance (which would be the
way in which these techniques would be used in practice).
As expected, based on our previous experiments, we get the
best performancewhenA = aI . Hence, we report our experi-
ments for this con guration only. To approximate the original
full model better, we increase the number of Gaussians in the
GMM per class. In Table 2 we provide results for different
number of Gaussians per class. Contrary to expectations, the
performance of the algorithm remained effectively the same
until 4 Gaussians and degraded when we increased the num-
ber of Gaussians further.

We then experimented with including the bias term �b in
the feature transformation. We expect only a small poten-
tial gain by using �b, since the features are already normalized
(CMS) during training and testing. In Table 3, we present the
results with different constraints of A and �b.

NG Con guration WER
- Baseline 1.70%
1 Unconstrained 8.91%
1 Diag. A, only c0 2.69%
1 Diag. A, c0, c1-c12 4.57 %
1 Diag. A, aI 1.50%

Table 1. Adaptation with different con guration of A where
A are trained with using all the test data per speaker, i.e., ap-
proximately 5.2 minutes.

All the experiments for �b are done per utterance. Once
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NG Con guration WER
- Baseline 1.70%
1 Diag. A = aI 1.52%
2 Diag. A = aI 1.59%
4 Diag. A = aI 1.60 %
8 Diag. A = aI 1.80%
16 Diag. A = aI 6.22%

Table 2. Adaptation with different con guration of A, where
A are trained using test data per utterance, i.e., approximately
3 seconds.

NG Con guration WER
- Baseline 1.70%
1 no A,�b 2.90%
1 Diag. A = aI ,�b 2.49%
1 A,�b 22.99 %
1 Diag. A = aI ,�b = b�1 1.46%

Table 3. Adaptation with different con guration of �b where
�b are trained with using only the test data per utterance, i.e.,
approximately 3 seconds.

again we observe that we need to constrain the transform to
be simple to achieve perfomance improvements. When we
use 2 parameters (A = aI , �b = b�1 a, b ∈ R) we achieve a
WER of 1.46% which is a relative improvement of 15 percent
over the baseline.

NG Performance Baseline A = aI ,�b = b�1
1 CA 71% 72 %
1 FAin 5% 5 %
1 CR 6 % 6 %
1 FAout 17 % 16 %

Table 4. Experiments with telephony set. Adaptation with
A = aI , �b = b�1, a, b ∈ R where parameters are trained
with using only the test data per utterance. CA:correct accep-
tance, FAin: false acceptance for in grammar utterances, CR:
correct rejection, FAout: false acceptance for out of grammar
utterances.

Next we report results of our experiments on our tele-
phony database. For these test sets we have several out of
grammar utterances so we use correct/false acceptance and
correct/false rejection rate as the comparison criteria. The re-
sults for the test set is given in Table 4 for A = aI , �b = b�1,
a, b ∈ R which (as before) is the best con guration in terms
of performance. Unlike the earlier test set, we observe no
improvement in performance. We believe that the proposed
algorithm works for embedded environment since the embed-
ded environment is fairly noisy unlike our telephony test set.

5. CONCLUSION

In this paper we introduced a adaptation technique using FM-
LLR with a simpli ed probabilistic model for estimation of
transformation parameters. The algorithm can be directly im-
plemented by the front end since it needs only binary tagging
of feature vectors by a speech/silence classi er which is usu-
ally part of the front end in standard speech recognizers. The
algorithm can also be viewed as maximum likelihood gen-
eralizations of CMS. We observe that even using a simple
speech/silence model, we obtain a relative improvement of
15% over the base rate. The algorithm requires minimal com-
putation and storage. The algorithm is effective mainly for
noisy environments. The performance of the algorithm can be
improved by increasing the complexity of the model used in
optimization. We are in the process of trying to use simpli ed
graphs based on vowels and consonants, which will approx-
imate the full model better than a speech/silence graph. We
also believe that the algorithm will give better performance
when it is used both for training and testing.
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