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ABSTRACT

In the past several years, we’ve been studying feature transfor-
mation approaches for robust automatic speech recognition (ASR)
based on the concept of stochastic vector mapping (SVM) to com-
pensating for possible “distortions” caused by factors irrelevant to
phonetic classification in both training and recognition stages. Al-
though we have demonstrated the usefulness of the SVM-based
approaches for several robust ASR applications where diversified
yet representative training data are available, the performance im-
provement of SVM-based approaches is less significant when there
is a severe mismatch between training and testing conditions. In
this paper, we present a maximum likelihood approach to unsu-
pervised online adaptation (OLA) of SVM function parameters on
an utterance-by-utterance basis for achieving further performance
improvement. Its effectiveness is confirmed by evaluation experi-
ments on Finnish Aurora3 database.

Index Terms— robust speech recognition, online adaptation,
feature compensation, maximum likelihood, hidden Markov model.

1. INTRODUCTION

Using feature transformation in training and/or recognition stages
to compensate for possible “distortions” caused by factors irrele-
vant to phonetic classification has been studied in robust automatic
speech recognition (ASR) area for many years. In the past several
years, we’ve also been working on this research topic based on
the concept of stochastic vector mapping (SVM) that performs a
frame-dependent transformation to compensate for “environmen-
tal” variabilities in both training and recognition stages. We’ve
studied several forms of SVM functions and two joint training ap-
proaches using maximum likelihood (ML) or minimum classifica-
tion error (MCE) criteria respectively for the estimation of SVM
and HMM parameters [14, 15, 17, 9].

There are several interesting works from other research groups
that are related to our efforts. As discussed in [4], although the
fMPE approach reported in [12] was derived with a different mo-
tivation, interestingly, its feature transformation is essentially the
same as what was used in [14]. The main difference lies in the
objective function used (MPE (minimum phone error) in [12] vs
MCE in [14]) and the corresponding optimization procedures for
training transformation and HMM parameters. The second work
is the MMI-SPLICE approach (e.g., [5]) in which the objective
function for parameter learning is maximum mutual information
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(MMI). The third work is the RDLT (Region Depedent Linear
Transform) approach reported in [19], in which the piecewise lin-
ear transformations are applied to a vector concatenated from sev-
eral frames of feature vectors and the training criterion is MPE.

Although we have demonstrated the usefulness of the SVM-
based approaches for several robust ASR applications where diver-
sified yet representative training data are available [14, 15, 17, 9],
it was also observed that the performance improvement of SVM-
based approaches is less significant when there is a severe mis-
match between training and testing conditions. It is therefore nat-
ural to explore the idea of unsupervised online adaptation (OLA)
of SVM parameters on an utterance-by-utterance basis and verify
whether a further performance improvement can be achieved. The
main purpose of this paper is to report our study on this topic.
As a remark, the interesting works reported in [11, 10] are re-
lated to our work here, but both of them perform unsupervised
online feature adaptation based on seed models (HMMs in [11]
and GMMs/Eigenvoices in [10]) without feature compensation.

The rest of the paper is organized as follows. In Section 2,
we summarize the SVM approaches to robust ASR. In Section 3,
we present an ML formulation for OLA of SVM function param-
eters. Evaluation results on Finnish Aurora3 database are reported
in Section 4. Finally, we conclude the paper in Section 5.

2. SVM APPROACHES

Let’s assume that a speech utterance corrupted by some “distor-
tions” has been transformed into a sequence of feature vectors.
Given a set of training data Y = {Yi}Ii=1, where Yi is a sequence
of feature vectors of original speech, suppose that they can be par-
titioned intoE “environment” classes, and theD-dimensional fea-
ture vector y under an environment class e follows the distribu-
tion of a mixture of Gaussians, p(y|e) = PK

k=1 p(k|e)p(y|k, e)
=
PK

k=1 p(k|e)N (y; ξ(e)k , R
(e)
k ) , where N (·; ξ,R) is a normal

distribution with mean vector ξ and diagonal covariance matrix
R. Readers are referred to [16] for the approach we used for the
automatic clustering of environment conditions from training data
Y , the labeling of an utterance Y to a specific environment condi-
tion, and the estimation of the above model parameters. Given
the set of Gaussian mixture models (GMM) {p(y|e)}, the task
of frame-dependent SVM-based compensation is to estimate the
compensated feature vector x̂ from the original feature vector y by
applying the environment-dependent transformation F(y; Θ(ey)),
whereΘ(ey) represents the trainable parameters of the transforma-
tion and ey denotes the corresponding environment class to which
y belongs. However, for the simplicity of notation, we will here-
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inafter simply use e to denote the environment class to which y
belongs, if no confusion will be caused according to the context.

So far we have studied five forms of SVM functions [14, 15,
17, 9]. The first one is borrowed from [3] and listed as follows:

x̂ � F1(y; Θ
(e)) = y +

KX
k=1

p(k|y, e)b(e)k , (1)

where

p(k|y, e) = p(k|e)p(y|k, e)PK
j=1 p(j|e)p(y|j, e)

, (2)

and Θ(e) = {b(e)k }Kk=1. The second SVM function is borrowed
from [2] and listed as follows:

x̂ � F2(y; Θ
(e)) = y + b

(e)
k , (3)

where, for the environment class e which y belongs to,

k = arg max
k′=1,...,K

p(k′|y, e) . (4)

The third one is borrowed from [7] and listed as follows:

x̂ � F3(y;Θ
(e)) = A(e)y + b(e) , (5)

whereA(e) is a nonsingularD×D matrix, b(e) is aD-dimensional
vector, and Θ(e) = {A(e), b(e)}. The fourth SVM function is
defined in the form of piecewise linear transformations [9] and
listed as follows:

x̂ � F4(y;Θ
(e)) = A(e)y +

KX
k=1

p(k|y, e)b(e)k , (6)

where Θ(e) = {A(e); b
(e)
k , k = 1, . . . ,K}. The fifth SVM func-

tion [9] is similar to Eq. (6) and listed as follows:

x̂ � F5(y;Θ
(e)) = A(e)y + b

(e)
k , (7)

where k is calculated by using Eq. (4).
Let’s assume that each basic speech unit in our speech recog-

nizer is modeled by a Gaussian mixture continuous density HMM
(CDHMM), whose parameters are denoted as λ = {πs, ass′ , csm,
μsm,Σsm; s, s

′ = 1, · · · , S;m = 1, · · · ,M}, where S is the
number of states, M is the number of Gaussian components for
each state, {πs} is the initial state distribution, ass′ ’s are state tran-
sition probabilities, csm’s are Gaussian mixture weights, μsm =
[μsm1, · · · , μsmD ]

Tr is aD-dimensional mean vector, andΣsm =
diag{σ2sm1, · · · , σ2smD} is a diagonal covariance matrix. Our en-
vironment compensated training approach is to adjust SVM func-
tion parameters Θ = {Θ(e), e = 1, · · · , E} and CDHMM pa-
rameters Λ = {λ} to optimize a training objective function. For
example, the ML training approaches of F1 and F2 are presented
in [15, 17]. The ML training approaches of F3 and F4 are pre-
sented in [9]. The ML training procedure of F5 is similar to that
of F4, where the only difference is that the training feature vec-
tors are compensated with Eq. (7) rather than Eq. (6) before the
estimation of CDHMM parameters Λ.

In recognition, given an unknown utterance Y , the most simi-
lar training environment class e is identified first (e.g. [16]). Then,
the corresponding GMM and the mapping function are used to de-
rive a compensated version X̂ from Y . For the convenience of no-
tation, we also use hereinafter F(Y ; Θ(e)) to denote the compen-
sated version of the utterance Y by transforming individual feature
vector yt as defined in the previous SVM functions. After feature
compensation, X̂ is finally recognized by an HMM-based recog-
nizer trained as described in [14] or [17] or [9].

3. ONLINE ADAPTATION OF SVM PARAMETERS

For “unseen” distortions that are not covered in training conditions
but exist in testing conditions, the pre-trained SVM parameters
may not work as effectively as expected. To mitigate the prob-
lem, one solution is to perform an unsupervised online adaptation
(OLA) using the utterance to be recognized to adapt the SVM pa-
rameters to characterize the new environment better. Apparently,
there are many ways of doing OLA. As a first step, we tried a sim-
ple ML approach that maximizes the following likelihood function
defined on the testing utterance Y by adjusting SVM parameters
Θ:

L(Θ) = p(F(Y ; Θ)|Λ). (8)

Among the five SVM functions, F1 and F2 belong to bias
removal techniques, while F4 and F5 belong to piecewise linear
transformations techniques. F3 is not frame-dependent compen-
sation and thus is not studied in this paper. We choose two SVM
functions F2 and F5 for OLA study due to the following reasons:

• F1 and F2 achieve similar performance according to exper-
imental results reported in [17]. So doF4 andF5 according
to results shown in Section 4;

• In comparison with F1 and F4, F2 and F5 have relatively
simple derivation and low computational complexity;

• F2 and F5 use consistent transformation functions in both
training and recognition stages, whileF1 andF4 use hybrid
approaches in two stages [17, 9].

3.1. Online Adaptation of F2

Given a set of F2 parameters Θ = {b(e)k ; k = 1, . . . ,K; e =
1, . . . , E} and CDHMM parameters Λ that are estimated from the
training data using ML SVM approach, the OLA problem here is
to adjust Θ to maximize the likelihood function in Eq. (8). The
updating formula of b(e)k can be derived easily by using EM algo-
rithm as follows:

b
(e)
kd =

P
t,s,m 1[k, t]ζt(s,m)(μsmd − ytd)/σ

2
smdP

t,s,m 1[k, t]ζt(s,m)/σ2smd

, (9)

where

1[k, t] =

8<
:
1 if k = argmaxk′ p(k′|yt, e)

0 otherwise
. (10)

In the above equation, ζt(s,m) is the occupation probability of
Gaussian component m in state s, at time t of the current compen-
sated observation x̂t = F2(yt; Θ

(e)). It can be calculated with a
Forward-Backward procedure using the compensated utterance X̂
against the CDHMM Λ.

Therefore, the unsupervised online adaptation procedure ofF2
includes the following steps:

Step 1. Given an unknown utterance Y , the most similar training
environment class e is identified first (e.g. [16]). Then Y
is converted to a compensated version X̂ by using F2. The
compensated utterance X̂ is then recognized via Viterbi de-
coding with pre-trained CDHMM parameters Λ.

Step 2. Given the recognized transcription, b(e)k ’s are updated by
using Eq. (9).
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Step 3. The utterance Y is converted to a compensated version X̂
by using F2 with the updated parameters {b(e)k }. Then X̂
is recognized with the pre-trained CDHMM parameters Λ
again.

Step 4. Steps 2 and 3 can be repeated until a pre-specified crite-
rion is satisfied (e.g., a fixed number of cycles).

3.2. Online Adaptation of F5

The parameter set of F5 is Θ = {A(e), b
(e)
k ; k = 1, . . . ,K; e =

1, . . . , E}. We may adapt both A(e) and b
(e)
k to the current ut-

terance to be recognized. However, our preliminary results show
that adaptation of A(e) encounters numerical problem because of
sparse adaptation data. A possible way to address this issue is to
use Bayesian estimation rather than the ML estimation, which will
be a topic of our future work. Therefore, we only discuss the adap-
tation of b(e)k in this paper. Again, by using the EM algorithm, the

updating formula of b(e)k in F5 can be derived as follows:

b
(e)
kd =

P
t,s,m 1[k, t]ζt(s,m)(μsmd −A

(e)
d · yt)/σ2smdP

t,s,m 1[k, t]ζt(s,m)/σ2smd

, (11)

where 1[k, t] is calculated with Eq. (10), and A(e)
d is the dth row

of A(e). Note that ζt(s,m) is the occupation probability of Gaus-
sian component m in state s, at time t of the current compensated
observation x̂t = F5(yt; Θ

(e)).
The OLA procedure for F5 is similar to that of F2. The dif-

ference is to use F5 rather than F2 in the relevant steps.

4. EXPERIMENTS AND RESULTS

4.1. Experimental Setup

We use Finnish Aurora3 database [1] to verify our algorithm. Au-
rora3 contains utterances of connected digits that were recorded by
using both close-talking (CT) and hands-free (HF) microphones in
cars under several driving conditions to reflect some realistic sce-
narios for typical in-vehicle ASR applications. There are roughly
three conditions: quiet, low noise, and high noise. The database is
divided into following three subsets according to matching degree
between training data and test data:

• Well-Matched (WM) condition: Both training and testing
data include utterances recorded by both CT and HF micro-
phones from all conditions;

• Medium-Mismatched (MM) condition: Training data in-
cludes utterances recorded by HF microphone in the quiet
and low noise conditions. Testing data includes utterances
recorded by HF microphone in the high noise condition;

• High-Mismatched (HM) condition: Training data includes
utterances recorded by CT microphone from all conditions.
Testing data includes utterances recorded by HF microphone
in the low noise and high noise conditions.

Therefore, the MM condition simulates mainly the mismatch caused
by a noisy environment due to different driving speeds and possi-
ble background music. The HM condition simulates mainly the
mismatch caused by different transducers.

In our experiments, the ETSI Advanced Front-End (AFE) as
described in [6] is used for feature extraction from a speech ut-
terance. A feature vector sequence is extracted from the input

Table 1. A comparison of word error rates (in %) of five SVM-
based approaches versus the CDHMM baseline system without
feature compensation.

WM MM HM
Methods (×40%) (×35%) (×25%) Average
Baseline 3.95 19.70 14.28 12.05
SVM1 3.33 17.78 16.01 11.56
SVM2 3.34 17.58 16.15 11.53
SVM3 3.08 16.48 15.37 10.84
SVM4 2.92 16.62 16.71 11.16
SVM5 2.92 16.48 16.61 11.09

speech utterance via a sequence of processing modules that include
noise reduction, waveform processing, cepstrum calculation, blind
equalization, and “server feature processing”. Each frame of fea-
ture vector has 39 features that consists of 12 MFCCs (C1 toC12),
a combined log energy and C0 term, and their first and second or-
der derivatives. Although all the feature vectors are computed from
a given speech utterance, the feature vectors that are sent to the
speech recognizer and the training module are those correspond-
ing to speech frames, as detected by a VAD module described in
Annex A of [6]. In SVM-based experiments, all the training data
are clustered into 8 different environment classes (i.e. E = 8),
of which each is modeled by a GMM consisting of 32 Gaussian
components (i.e. K = 32).

Each digit is modeled as a whole word left-to-right HMM with
16 emitting states, 3 Gaussian mixture components with diagonal
covariance matrices per state. Besides, two pause models, “sil”
and “sp”, are created to model the silence before/after the digit
string and the short pause between any two digits, respectively.
The “sil” model is a 3-emitting state HMM with a flexible transi-
tion structure as described in [8]. Each state is modeled by a mix-
ture of 6 Gaussian components with diagonal covariance matrices.
The “sp” model consists of 2 dummy states and a single emitting
state which is tied with the middle state of “sil”. During recogni-
tion, an utterance can be modeled by any sequence of digits with
the possibility of a “sil” model at the beginning and at the end and
a “sp” model between any two digits. Recognition experiments are
performed with the search engine of HTK toolkit [18].

For the convenience of reference, we have used the terms of
SVM1, SVM2, SVM3, and SVM4 to refer to different SVM-based
approaches in [17, 9]. Here, we define one more approach, SVM5,
in which the SVM function F5(y; Θ

(e)) in Eq. (7) is used in both
training and recognition for feature compensation.

4.2. Results of Different Baseline Systems

Table 1 summarizes a comparison of word error rates (WERs in
%) of five SVM-based approaches versus the CDHMM baseline
system without feature compensation. It is observed that the SVM
approaches achieve better performance than the CDHMM baseline
system for the WM and MM conditions, but degrade the perfor-
mance for the HM condition. It indicates that the pre-trained SVM
functions cannot effectively compensate for distortions in highly
mismatched testing data. SVM1 and SVM2 achieve similar per-
formance, so do SVM4 and SVM5. Therefore, rather than doing
online adaptation based on all SVM functions, we adopt SVM2
and SVM5 for further study of online adaptation.
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Table 2. A comparison of word error rates (in %) of the CDHMM-
based baseline system, the SVM2-based baseline system, and the
adapted SVM2-based systems with different OLA cycles.

Testing CDHMM SVM2 OLA Cycles
Conditions Baseline Baseline 1 2

WM(×40%) 3.95 3.34 3.26 3.26
MM(×35%) 19.70 17.58 16.14 15.87
HM(×25%) 14.28 16.15 13.64 11.98

Average 12.05 11.53 10.36 9.85

Table 3. A comparison of word error rates (in %) of the CDHMM-
based baseline system, the SVM5-based baseline system, and the
adapted SVM5-based systems with different OLA cycles.

Testing CDHMM SVM5 OLA Cycles
Conditions Baseline Baseline 1 2

WM(×40%) 3.95 2.92 2.73 2.73
MM(×35%) 19.70 16.48 14.84 14.43
HM(×25%) 14.28 16.61 13.71 12.54

Average 12.05 11.09 9.71 9.28

4.3. Results of Unsupervised Online Adaptation

Unsupervised online adaptation (OLA) of SVM2 or SVM5 func-
tions is performed on each testing utterance according to the pro-
cedures described in Section 3 for two adaptation cycles. Tables 2
and 3 summarize WERs of the adapted systems based on SVM2
and SVM5, respectively. For comparison, we also list the results
of the CDHMM-based baseline system without feature compen-
sation and the corresponding SVM-based baseline system. It is
observed that unsupervised OLA can indeed improve the perfor-
mance further. We have also conducted a comparative study with
two existing robust ASR approaches in literature: unsupervised
MLLR (e.g. [7]) and feature-space stochastic matching (SM) [13].
For each testing utterance, a global diagonal transformation matrix
and a bias vector are estimated in MLLR, while a bias vector is es-
timated in SM approach. Two adaptation cycles are performed for
both approaches. The performance of different OLA approaches
is compared in Table 4. The SVM5-based approach achieves the
best overall performance.

5. SUMMARY

In this paper, we have studied an ML approach to unsupervised on-
line adaptation (OLA) of two SVM functions: SVM2 and SVM5.
Evaluation results on Finnish Aurora3 database show that in com-
parison with the CDHMM-based baseline system, unsupervised
OLA of SVM2 yields a relative word error rate reduction of 17.5%,
19.4% and 16.1% for WM, MM and HM conditions respectively,
while unsupervised OLA of SVM5 yields a relative word error rate
reduction of 30.9%, 26.8%, 12.2% respectively.
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