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ABSTRACT
In this paper, we propose a new incremental model adaptation
approach based on posterior distributions of model parame-
ters. We consider a propagation mechanism of the posterior
distributions whereby that the process of posterior re nement
is modeled analytically. Then, we derive an incremental esti-
mation algorithm based on a time evolution system, which ex-
plicitly includes a discrete stochastic process unlike the con-
ventional Bayesian approaches. This algorithm is viewed as
a general solution of the Kalman lter algorithm, where pos-
terior distributions make a transition after every input of an
utterance set, and where the evolutions of posterior distribu-
tions are represented on a macroscopic time scale.
Index Terms— Speech recognition, acoustic model, in-

cremental adaptation, discrete stochastic process, macroscopic
time evolution

1. INTRODUCTION
In real environments, speech characteristics and their acous-
tic conditions are constantly changing due to such factors as
the variability of speaking style, and the superposition of non-
stationary noise. Incremental adaptation techniques for speech
recognition are aimed at adjusting acoustic models to track
such time-variant conditions whereas batch-type adaptation
techniques mainly deal with time-invariant conditions.
The straightforward incremental adaptation approach re-

nes acoustic model parameters, step-by-step, after every par-
tial input of speech, which most typically consists of a small
set of utterances. The adaptation starts with a set of initial pa-
rameter values as in the case of batch-type adaptation. Then,
the re ned parameter values are used as initial parameter val-
ues in the next re nement step, so that the effect of the re-
nement propagates in succeeding steps. Since there are un-
avoidable estimation errors for a re nement that only uses a
small amount of data, this adaptation scheme also propagates
the errors, and this affects the adaptation stability. On the
other hand, an incremental adaptation scheme that estimates
the distributions of the parameters instead of the parameters
themselves can mitigate the unstable adaptation caused by
the in uence of estimation errors. Incremental Bayesian ap-
proaches, for example, estimate the posterior distributions of
model parameters [1, 2] or of transformation parameters [3],
and use the results as prior distributions in the next estimation
step. Since the effect of re nement is thus propagated via dis-
tributions, the in uence of the estimation errors is absorbed
into the distribution spread, which realizes a stable adapta-
tion.
In this paper, we further enhance this propagation mecha-

nism so that the posterior re nement process is modeled an-
alytically. We derive an incremental estimation algorithm for

the posterior distributions of model parameters based on a
time evolution system, which explicitly includes a discrete
stochastic process unlike the conventional Bayesian approaches.
This algorithm is also viewed as a general solution of the
Kalman lter algorithm, where posterior distributions make
a transition after every input of an utterance set, and where
the evolutions of posterior distributions are represented on a
macroscopic time scale.

2. FORMULATION

2.1. Posterior distribution based incremental adaptation

Aswe start the formulation, we rst de ne the following macro-
scopic time scale as an adaptation time unit by using a partial
time series of adaptation feature vectors based on the utter-
ances.

O = {o1, ...,oN1︸ ︷︷ ︸
O1

, ...oNt−1+1, ...,oNt−1+Nt︸ ︷︷ ︸
Ot

, ....} (1)

Here, on ∈ RD denotes a D dimensional feature vector at
frame n, while Ot denotes a set of feature vectors at macro-
scopic time t.
The straightforward adaptation scheme focuses on updat-

ing acoustic model parameters θt. Then, an incremental adap-
tation is realized by constructing a recurrence equation to rep-
resent the time evolution from t − 1 to t:

θt = T (θt−1), (2)

where T (·) denotes an arbitrary transformation function, such
as the af ne transformation used in the MLLR adaptation [4,
5].
On the other hand, this paper focuses on updating a poste-

rior distribution of model parameter θt conditioned on the ac-
cumulated data from the beginning of adaptation, i.e., Ot =
{O1,O2, ...,Ot}. Namely, the estimation target is, now, the
posterior distribution of model parameter p(θt|Ot), instead of
model parameter θt. Then, we consider the following recur-
rence equation to represent a time evolution:

p(θt|Ot) = T [p(θt−1|Ot−1)], (3)

where T [·] denotes an arbitrary transformation functional whose
argument is posterior distribution p(θt−1|Ot−1). The follow-
ing sections describe how to realize this incremental adapta-
tion scheme in practice.
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2.2. Incremental adaptation including a discrete stochas-
tic process

We rst introduce a concrete form of functional Eq. (3). By
using the probabilistic product formula and Bayes theorem,
the following recurrence equation can be derived analytically
without using any approximations.

p(θt|Ot) ∝ p(Ot|θt, O
t−1)∫

p(θt|θt−1, O
t−1)p(θt−1|Ot−1)dθt−1.

(4)

In this paper, instead of dealing with Eq. (4) directly, we intro-
duce the Markov process approximation, i.e., p(Ot|θt, O

t−1)
→ p(Ot|θt) and p(θt|θt−1, O

t−1) → p(θt|θt−1). In prac-
tice, we only consider Gaussian mean vector parameter μ as
time-variant, which is assumed to be the dominant parame-
ter in speech recognition, i.e., θ → μ. Then, Eq. (4) can be
rewritten as:

p(μt|Ot) ∝ p(Ot|μt)
∫

p(μt|μt−1)p(μt−1|Ot−1)dμt−1.

(5)

The right hand side of Eq. (5) consists of three distributions.

1. p(Ot|μt) is an output distribution.

2. p(μt|μt−1) denotes a discrete stochastic process of μt.

3. p(μt−1|Ot−1) is a posterior distribution, which is al-
ready estimated in the previous adaptation step t − 1.

The current posterior distribution p(μt|Ot) is incrementally
evolved from the previously estimated posterior distribution
p(μt−1|Ot−1), which is dependent on p(Ot|μt) and p(μt|μt−1).
This is an important characteristic of the proposal, which dif-
ferentiates it from the conventional Bayesian approaches [1–
3], by explicitly including the discrete stochastic process. The
next section plugs the appropriate concrete forms into each
distribution on the right hand side of Eq. (5) to obtain a prac-
tical solution for p(μt|Ot), analytically.

2.3. Analytic solution based on a linear dynamical system

First, we set the output distribution p(Ot|μt) from a standard
acoustic model, which is represented by a Hidden Markov
Model (HMM), and a GaussianMixtureModel (GMM). p(Ot|μt)
outputs a partial time series of adaptation feature vectorsOt =
{oNt+1, ...,oNt+Nt+1}, and is represented by:

p(Ot|μt) =
∏

Nt+Nt+1
n=Nt+1 N (on|μt, Σ), (6)

whereN (·|μt, Σ) denotes a Gaussian distribution, which has
a time-variant mean vector parameter μt and a time-invariant
covariance matrix parameter Σ. Σ is obtained from an initial
acoustic model. Although Eq. (6) omits state transition and
mixture weight parameters, and latent variables included in
the HMMs and GMMs, these are considered in the E-step of
the EM algorithm.

Second, we introduce an af ne transformation to provide
a simple representation of the discrete stochastic process of
μt as follows:

μt = Aμt−1 + ν + εt−1, (7)

where A is a D × D matrix, which denotes a linear transfor-
mation consisting of the rotation and scaling of μt−1, and ν
is a D dimensional vector, which denotes a bias transforma-
tion. εt−1 is called a system noise, which is represented by
a Gaussian with a 0 mean vector and covariance matrix U .
This can be viewed as an af ne transformation that is uctu-
ated by noise εt−1. Then, the discrete stochastic process is
represented by the following concrete form:

p(μt|μt−1) = N (μt|Aμt−1 + ν, U). (8)

Finally, we assume that p(μt−1|Ot−1) is represented by
a Gaussian, which has a mean vector parameter μ̂t−1 and a
covariance matrix parameter Q̂t−1 as follows:

p(μt−1|Ot−1) = N (μt−1|μ̂t−1, Q̂t−1). (9)

Thus, by substituting Eqs. (6), (8), and (9) into Eq. (5),
we can derive the following analytic solution

p(μt|Ot) = N (μt|μ̂t, Q̂t), (10)

where⎧⎨
⎩

Q̂t = ((U + AQ̂t−1A
′)−1 + ζtΣ−1)−1

K̂t = Q̂tζtΣ−1

μ̂t = Aμ̂t−1 + ν + K̂t(Mt/ζt − Aμ̂t−1 − ν)
. (11)

ζt is an occupation count andMt is rst-order statistics, both
of which are assigned to the targeted Gaussian. Here ′ de-
notes the transpose operation of matrix. Thus, we can update
a posterior distribution by updating distribution parameters
(Q̂t and μ̂t) based on Eq. (11).
The right hand side parameters in Eq. (11) are classi ed

into three types, and are obtained as follows:

• Statistics ζt and Mt are ef ciently computed by the
forward-backward or Viterbi algorithm.

• The af ne transformation parameters A and ν can be
estimated by the Maximum Likelihood (ML) approach
usingOt [4] 1.

• Covariance matrix parameter U of the system noise is
assumed to be proportional to that of output distribution
Σ as U = (u0)−1Σ, where u0 is a tuning parameter.

Thus, we can actually implement this incremental adaptation
with a single tuning parameter (u0). This corresponds to a
solution of a linear dynamical system, where the observable
equation corresponds to the output distribution (Eq. (6)) and
the state equation corresponds to the discrete stochastic pro-
cess (Eq. (7)).

1Although we can also obtain the transformation parameters using a
Bayesian estimation approach or incorporate an incremental adaptation
scheme into the transformation parameter estimation [3], we adopt the simple
ML estimate form of the transformation parameters to avoid the complicated
formulation in this paper.
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Fig. 1. Mean vector parameter —̂t is updated by the prediction and
residual vectors.

2.4. Macroscopic time evolution system

Eq. (11) is regarded as a general solution of the Kalman lter
algorithm in a linear dynamical system. Therefore, according
to the standard Kalman lter interpretation, we discuss the
meaning of the μ̂t update equation in Eq. (11) by rewriting it
as follows:

μ̂t = Aμ̂t−1 + ν︸ ︷︷ ︸
prediction

+K̂t (Mt/ζt − Aμ̂t−1 − ν)︸ ︷︷ ︸
residual

. (12)

From Eq. (12), a state variable (μ̂t−1) is predicted by an
af ne transformation (parameterized by A and ν). However,
the predicted value (Aμ̂t−1 + ν) often contains errors re-
sulting from an incorrect estimation, which causes an un-
stable incremental adaptation due to error propagation. To
avoid such unstable estimations, the predicted value is com-
pensated by a residual term, which is obtained as the ob-
servable mean vector (Mt/ζt) minus the predicted value.
Kalman gain K̂t controls the degree of this compensation (as
shown in Fig. 1). Thus, our approach realizes a stable incre-
mental adaptation, which explicitly includes this prediction
(transformation) and error compensation mechanism via the
discrete stochastic process, unlike the conventional Bayesian
approaches [1–3].
Our solution is represented by macroscopic values, which

is unlike the standard Kalman lter solution. For example, the
standard Kalman lter is updated frame by frame (on−1 →
on) while our solution is updated by a partial time series
(Ot−1 → Ot). In addition, distribution parameters Q̂t, K̂t,
and μ̂t in our solution are represented by the statistics ζt and
Mt obtained from Ot, while those of the standard Kalman
lter are represented by a single frame feature vector on.
Thus, we call our approach a macroscopic time evolution sys-
tem.
Finally, we comment on parameter u0, which is intro-

duced at the system noise setting in Section 2.3. This pa-
rameter plays an important role in connecting the af ne trans-
formation and ML approaches as follows:

• Large u0 case (u0 → ∞): μ̂t → Aμ̂t−1 + ν is a mean
vector parameter predicted by an af ne transformation
approach.

• Small u0 case (u0 → 0): μ̂t → Mt/ζt is an ML
estimate obtained by usingOt.

Thus, μ̂t is represented as an interpolation between the pre-
dicted andML values, and the degree is controlled by u0. This
is similar to the methods that combine the transformation and
MaximumA Posteriori (MAP) adaptation approaches serially
by rst estimating the transformation parameters, and then us-
ing theMAP adaptation for the transformedmodel parameters
(MLLR-MAP and bias-MAP) [5, 6].

Table 1. Experimental conditions for speaker adaptation
Sampling rate/quantization 16 kHz / 16 bit
Feature vector 12 order MFCC with energy
(39 dimensions) +Δ+ΔΔ
Window Hamming
Frame size/shift 25/10 ms
Number of temporal HMM states 3 (Left to right)
Number of phoneme categories 43
Number of context-dependent HMM states 2,000
Number of mixture components 16

Initial training data ASJ read sentences, 10.2 hours (44 males) †
Adaptation data CSJ lectures, 128 × 20 utterances (20 males) ‡
Test data CSJ lectures, 64,341 words (20 males) ‡

Language model Standard trigram (made by CSJ transcription)
Vocabulary size 30, 000
Perplexity (OOV rate) 82.2 (2.1 % )

† ASJ (Acoustical Society of Japan) database‡ CSJ (Corpus of Spontaneous Japanese) database
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Fig. 2. Comparison of the proposed methods with varying u0, con-
ventional bias, MAP, and bias-MAP adaptation within incremental
adaptation experiments.

3. EXPERIMENTS

We conducted supervised speaker adaptation experiments to
examine the basic performance of the proposed incremental
adaptation method in terms of (i) stability of adaptation pro-
cess, (ii) dependence on parameter u0, and (iii) comparison
with batch adaptation. Table 1 summarizes the experimental
conditions. The initial (prior) acoustic model was constructed
from read sentences and we adapted this model using lectures
given by 20 males and their transcriptions. All the males de-
livered more than two lectures, and the latest recorded lec-
tures were used for recognition tests, and the other lectures
were used for the adaptation. In this experimental setup, the
mismatch between the initial and target conditions is caused
not only by the speakers, but also by the difference in speak-
ing styles between read speech and a lecture. The purpose of
the adaptation was to eliminate the mismatches stably in an
incremental fashion.
The rst experiment was aimed at con rming the per-

formance stability for the test data, which were commonly
used for examining the performance of adapted model af-
ter each incremental step. Each incremental adaptation step
used 16 utterances, and eight steps in total were undertaken
for each speaker. Figure 2 compares the proposed approach,
which involves using different u0 settings, with the MAP and
transformation-based adaptations. The transformation param-
eters were estimated independently of incremental steps, i.e.,

IV ­ 771



the batch estimation was operated for the transformation pa-
rameters in each incremental step. The transformation pa-
rameters were shared among several Gaussians based on the
familiar Gaussian tree clustering technique [4]. In this ex-
periment for both proposed and conventional approaches, the
transformation was the biasing (A = I in Eq. (7)) because it
was not feasible to estimate the matrix A properly using only
16 utterances. The MAP-, bias-, and bias-MAP-estimated pa-
rameters at each incremental step were used as initial parame-
ters in the next step. We can see that the proposal of the setting
of u0 at around 10 and the MAP and bias-MAP performed
much more stably than the bias. This is because the proposal,
MAP, and bias-MAP are based on the posterior distribution
estimation. In addition, the proposal (u0 = 5, 10, 20) per-
formed about 1 % better than MAP, and 0.5 % better than
bias-MAP, which serially combining both the MAP and bias
adaptation. These results suggest that the proposal fully demon-
strated the effect of the prediction and error-compensation
mechanism derived from a discrete stochastic process by uti-
lizing both the characteristics of MAP and bias adaptation, as
discussed in Section 2.4.
Next, we examined the performance when u0 had extremely

small (0.01) and extremely large (10000) values, which be-
come asymptotically equivalent, as discussed in Section 2.4,
to the ML estimation of model parameters and bias estima-
tion, respectively. Because of an insuf cient amount of data
(16 utterances) for the ML estimation, the setting u0 = 0.001
caused overtraining and increased the errors somewhat as the
adaptation proceeded. Although the setting u0 = 1000 did
not degrade the performance, the behavior was almost the
same as the bias adaptation. By setting u0 around 10, the pro-
posed approach is assumed to make full use of its advantages
of the prediction and error-compensation mechanism. These
results are consistent with the discussion in Section 2.4. From
the above results for various u0 values, we can state that the
recognition performance is not very sensitive to the u0 value
unless we use an extreme value (0.01 or 10000). This sug-
gests that the proposed adaptation works based on a heavy
dependence on u0, and that we do not need to be very careful
in choice of u0 value if we choose a value of around 10.
Table 2 shows the results of recognition tests using acous-

tic models obtained after the nal (eighth) step of the pro-
posed incremental adaptation (u0 = 10). The table also in-
cludes results for three types of batch adaptation that used
all the utterances for the eight steps at one time. When we
applied the estimation calculus employed in the proposed in-
cremental method to the batch adaptation, the performance
(WER = 19.8 %) was slightly better than that of the incre-
mental method (WER = 20.4 %). However, at the end of the
nal step, the proposed incremental method performed bet-
ter than the conventional bias method (WER = 22.1 %), and
comparably to the conventional bias-MAP method (WER =
20.2 %). Incremental adaptation, in general, is less advan-
tageous than batch adaptation when both use the same adap-
tation data since the incremental approach does not guaran-
tee to give optimal estimates for all the adaptation data. The
above experimental results prove that the prediction and error-
compensation mechanism in the proposed method worked prop-
erly and resulted in a quasi-optimum model which, at least,
performs comparably to the batch-adapted model. Another
experiment with the same purpose was also conducted that
employed MLLR instead of bias as the transformation. Since

Table 2. Comparison of incremental and batch adaptations by em-
ploying bias adaptation.

Incremental Batch
Proposal Proposal Bias Bias-MAP

WER 20.4 % 19.8 % 22.1 % 20.2 %

Table 3. Comparison of incremental and batch adaptations by em-
ploying MLLR adaptation.

Incremental Batch
Proposal Proposal MLLR MLLR-MAP

WER 20.2 % 19.6 % 21.5 % 19.9 %

16 utterances were insuf cient for the MLLR estimation at
each incremental step, we made each step use 32 utterances,
and reduced the total number of steps to four. The result in
Table 3 indicates a very similar tendency to the bias adapta-
tion case, i.e., the proposed incremental adaptation could pro-
duce a model that performed comparably to the batch-adapted
model.
Thus, we found that the proposed approach provided a

stable incremental adaptation process, and the adapted model
performed better than those obtained by conventional incre-
mental approaches, and even performed comparably to the
batch-adapted model.

4. SUMMARY
We proposed a new incremental adaptation method based on
a macroscopic time evolution system. Supervised speaker
adaptation experiments reveal the stable performance of the
proposed method obtained by utilizing the advantages of the
prediction and error-compensation mechanism based on the
Kalman lter algorithm. We will apply the proposed method
to more realistic incremental adaptation tasks such as online
and unsupervised tasks [2, 7].
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