
PROBABILISTIC AND BOTTLE-NECK FEATURES FOR LVCSR OF MEETINGS
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ABSTRACT
In recent years, probabilistic features became an integral part of
state-of-the-are LVCSR systems. In this work, we are exploring the
possibility of obtaining the features directly from neural net with-
out the necessity of converting output probabilities to features suit-
able for subsequent GMM-HMM system. We experimented with
5-layer MLP with bottle-neck in the middle layer. After training
such a neural net, we used outputs of the bottle-neck as features for
GMM-HMM recognition system. The benefits are twofold: first,
improvement was gained when these features are used instead of the
probabilistic features, second, the size of the system was reduced, as
only part of the neural net is used. The experiments were performed
on meetings recognition task defined in NIST RT’05 evaluation.

Index Terms— Probabilistic features, bottle-neck features,
TRAP-based features, LVCSR, meeting recognition.

1. INTRODUCTION

The probabilistic features – class probabilities converted to the form
suitable for following GMM-HMM system – were introduced to
speech recognition research in TANDEM feature extraction [1]. The
class probabilities are usually estimated by a neural network and the
classes are context-independent phonemes. The conversion of prob-
abilities to probabilistic features is usually done by log followed by
PCA de-correlation, possibly with dimensionality reduction.
TRAP processing [2] is a way to obtain probabilistic features.

The novelty of this approach is in processing of temporal patterns
(hence TRAP) of log-energy from each critical band independently.
The temporal pattern is classified by a band-conditioned nonlinear
classifier (multi-layered perceptron – MLP) into a phoneme class.
The outputs from all band-conditioned classifiers are then merged.
The final classification is done by a merging classifier.
The first stage — band-conditioned classifier — can be seen as

a temporal feature extractor and the merging net as a classifier of
these temporal features. The use of band-conditioned class proba-
bilities as temporal features was studied in [3]. Authors examine
the usefulness of intermediate products of band-conditioned neural
net for overall classification and recognition performance. Good re-
sults were obtained with the hidden (middle) layer activation outputs.
This technique is called Hidden Activation TRAPS – HATS.
In further research [4], the HATS neural net structure was cre-

ated as one net – Tonotopic MLP. In this four-layered MLP, the
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first (input) and the second (first hidden) layers are not fully con-
nected. The bands are processed independently and the following
fully-connected layers combine information derived from each crit-
ical band to output class probabilities. In this case, the temporal
features are hidden and the neural net derives them in the training
process as a part of the overall training for maximization of classifi-
cation accuracy.

The study in [5] pushes the extraction of temporal features out
of the classifier. Instead of complex non-linear transform in form of
neural net, a simple discrete cosine transform (DCT) is used on top
of each critical band temporal trajectory. This transform, which was
earlier proposed as pre-processing of temporal patterns for band-
conditioned classifiers, provides sufficient information about the un-
derlying temporal pattern and the classifier – a fully connected four-
layer MLP – focuses only on the classification task.

The use of phoneme model states as classes is proposed in [6].
This modification is supported by the fact that temporal trajectory is
quite different at the beginning and at the end of the phoneme. By
classifying input features into more compact classes (in the feature
space), such as phoneme model states, higher classification accuracy
is achieved.

Our goal is to investigate, if better representation than posteri-
ors can be found also in the net feeding directly the GMM/HMM
models.

The outcomes of previous research are used in designing the sys-
tem. The temporal patterns are transformed by DCT before entering
the neural net classifier. Phoneme-states are used as classes for bet-
ter classification accuracy. Finally, Heteroscedastic Linear Discrim-
inant Analysis (HLDA) [7] technique was used instead of PCA for
feature de-correlation similarly as in [8].

2. BOTTLE-NECK FEATURES

The classes-probability estimates or features derived from them do
not have to be the best for subsequent classification.

We have seen, that in HATS [3], the authors resigned from using
the band-conditioned posteriors at the output of the neural net and
tried to find more suitable representation for the following merging
classifier. Obviously, if the estimates from the first stage were per-
fect, the subsequent classification would not be necessary in the case
when both stages have the same output classes.

The point is that band-conditioned estimators, as they see the in-
formation only from one critical band and the shapes of the tempo-
ral patterns can be very similar for several classes [9], provide rather
poor classification accuracy. The usual accuracy of the classifiers
is around 25%. Also, since the input is small and higher accuracy
cannot be achieved, the classifier can be small. In this case, we can
use the outputs of hidden layer directly as features for subsequent
classification.

IV  7571424407281/07/$20.00 ©2007 IEEE ICASSP 2007



52
+

+
+

Segmentation

step: 10ms

length: 25ms
HLDA 39PLP

analysis

VTLN

analysis

VTLN

Log−critical band

Log−critical band

spectrogram

DCT 0−15

DCT 0−15

DCT 0−15

DCT 0−15

Log

HLDA

neural
net

Speech signal
39

25−45

speaker based

variance 

normalization

mean and

speaker based

variance 

normalization

mean and

Fig. 1. The scheme of the feature extraction

The situation is different for the merging classifier. The subse-
quent GMM models do not have the same classes – they are trained
to distinguish between context-dependent phonemes. For this, more
informative features than the context-independent class posteriors
are needed. The merging classifier is also quite big. The input vector
is concatenation of all band-conditioned outputs and sufficient size
of the hidden layer is also needed as it affects the final classification
accuracy [10]. For practical reasons, it is not possible to pass several
hundreds features to the GMM-HMM recognizer.

The dimensionality reduction techniques, which have to be used
to obtain reasonable size of feature vector for the recognizer, have
also drawbacks: first, they are only linear: the optimal dimensions
for classes separations may not be found as the information in highly
dimensional vectors may not by linearly separable. Furthermore, the
PCA technique relies only on the variance of individual features, and
the high dimensionality of input vectors causes problems when more
sophisticated techniques such as HLDA are used.

If we do not want to use the dimensionality reduction tech-
niques, and want to obtain the features suitable for the classification
as outcome of neural net training process, a bottle-neck has to be
created in the neural net structure. The neural net has the ability of
nonlinear compression of the input features and of classification of
such compressed features. If the trained neural net with bottle-neck
has a good classification accuracy, we know that the bottle-neck out-
puts represents the underlying speech well.

For the reasons mentioned above, the use of widely employed
three-layer MLP is not possible. A four-layer net can have bottle-
neck in its first or second hidden layer. Net with bottle-neck in first
hidden layer will have only limited power – one matrix multiplica-
tion and the nonlinearity – to extract suitable features from the input
and the following layers may fail to correctly classify the input data.
The bottle-neck in second hidden layer brings the disadvantage of
poor classification of low dimensionality features into higher num-
ber of classes in only one layer. In both cases, the training procedure
may not find the best features.

A four-layer MLP with bottle-neck in second hidden layer was
used in [11]. Authors report improvement in small-vocabulary
isolated-word recognition over PLP features. But the size of their
bottle-neck (27 to 64 units) was similar to the output size (47
classes).

We decided to use five-layer MLP with the bottle-neck in the
middle hidden layer. Such structure has enough power for extracting
the internal features and also for their efficient classification.

To obtain the features, the neural net outputs are taken after the

matrix multiplication and bias, before the sigmoid nonlinearity.

3. FEATURE EXTRACTION

The feature extraction follows the scheme in Fig 1. The upper branch
of the diagram shows features consisting of 12th order PLP coeffi-
cients [12] plus energy computed over a 25 ms frame window every
10 ms. The Vocal Tract Length Normalization (VTLN ) is used to
reduce speaker variability. 1st, 2nd and 3rd order derivatives are cal-
culated and appended to yield 52 dimensional feature vector. The
dimensionality of these features is reduced to 39 by HLDA [7] and
the resulting features are denoted HLDA-PLP .

The lower branch describes the computation of TRAP-based
features. Here, we will not distinguish between the probabilistic and
bottle-neck features as the processing steps are the same.

First, the power spectrum is computed over a 25 ms frame win-
dow every 10 ms. The power spectrum values are then integrated
by 23 triangular filters and logarithm of their outputs is taken. Also
here, the VTLN technique is used. The log-critical band energies are
normalized to have zero mean and unity variance for each speaker.
31 consecutive frames from each critical band are transformed with
16 DCT bases including the 0

th base (DC offset). The transformed
vectors creates input to the classifier with input size 16× 23 = 368.
The total number of weights in classifier was one million in all cases.
The classifier outputs are states of 45 phoneme models, so there are
135 training targets. They are associated with the central frame of
input critical band trajectories. Neural net outputs are de-correlated
by HLDA which can also reduce the dimensionality of output fea-
tures. The classes for HLDA are defined by tied states of context-
dependent phoneme models. In case of probabilistic features, the
logarithm precedes the HLDA.

Then, both streams are concatenated and features are mean and
variance normalized per speaker.

4. EXPERIMENTAL SETUP

The system is based on AMI-LVCSR system used in NIST RT’05
evaluation [13]. Here we only summarize the main features of the
system:

Data – The task is the recognition of meetings defined in NIST
RT’05 evaluation. Independent headset microphone (IHM) data with
reference segmentation were used. The test contains about 2 hours
of speech. The training set consists of complete NIST, ISL, AMI and
ICSI meeting data – about 114 hours.
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bottle-neck size 25 30 35 40 45

accuracy [%] 47.5 47.7 48.0 47.9 48.2

Table 1. Classification accuracy of neural net with bottle-neck.

Recognition system works in two passes: The first pass, which
is fixed in our experiments, generates wide latices with VTLN
HLDA-PLP features (upper branch in Fig. 1), gender independent
discriminatively trained cross-word acoustic models and bi-gram
language model. These latices are then expanded by 4-gram lan-
guage model.
The acoustic models contain 7700 tied states with 16 Gaussians

components per state. The language model consist of 50K unigrams,
13M bigrams, 20M trigrams and 22M fourgrams. Its perplexity is
85.4 on NIST RT’04 development data.

New features are generated as described in section 3 for the sec-
ond pass. Then, new models are trained starting with single-pass-
retraining from the HLDA-PLP models used in the first pass fol-
lowed by eight iterations of Baum-Welsh re-estimation. With these
new models, the latices are acoustically rescored. The NIST RT’05
scoring is used to obtain the final word error rate (WER).

To compare the performance of the bottle-neck features with the
probabilistic features, we used the four-layer MLP to estimate class
probabilities. HLDA is then used for de-correlation and dimension-
ality reduction. The feature size of both bottle-neck and probabilistic
features varied from 25 to 45 to find the optimal size.
We also compared the performance of each feature kind – i.e.

HLDA-PLP, probabilistic and bottle-neck – on its own. The second
pass of the system is performed for each feature kind.
The recognition constants – scale factor and word insertion

penalty – need to be tuned for each dimensionality of feature vec-
tor. It was also found that probabilistic and bottle-neck features are
very distinct and using the same constants for both kinds of features
leads to suboptimal solution. Therefore, the constants are tuned also
for each feature kind.

4.1. Neural net training

For the neural net training, one third of data from each site was used
– about 38 hours together.
The training of the neural nets is split into two parts. First, only

10 hours of data randomly selected from training set were used. The
standard back-propagation algorithm and the “newbob” learning rate
scheduling1 was used. The training stopped when the increment of
classification accuracy on held-aside cross-validation (CV) set be-
tween two epochs was smaller than 0.5%.
In the second part, all neural net training data were used and

another four epochs of training were performed. The learning rate
started on the last value from the first part and was multiplied by
0.45 in subsequent epochs.
The neural nets are trained in exactly same way, only their struc-

tures differ. For probabilistic features, a four-layer MLP is used, two
hidden layers have the same size. For bottle-neck features, a five-
layer MLP with bottle-neck in the second hidden layer is trained.
The first and third hidden layers have the same size. After the train-
ing, the MLP is used only till the bottle-neck nonlinearity (the non-
linearity is not applied). The portion of the net used to derive the

1The learning rate is kept fixed till the increment in cross-validation ac-
curacy is bigger than a threshold. For the subsequent epochs, learning rate is
halved till the increment falls below stopping threshold.

feature size 64 69 74 79 84
(NN output) (25) (30) (35) (40) (45)

probabilistic 26.1 25.9 25.6 25.7 25.7

bottle-neck 25.2 25.2 24.9 25.2 25.0

Table 2. WER for probabilistic and bottle-neck features in full fea-
ture extraction framework

feature size 25 30 35 39 40 45

HLDA-PLP — — — 28.7 — —

probabilistic 28.9 28.1 27.9 — 27.5 27.3

bottle-neck 27.3 26.9 26.6 — 26.6 26.2

Table 3. WER for each feature stream itself

bottle-neck features is 70%, the last 30% classify the features into
the classes.

We used the SNet [14] training software which allows for paral-
lel training. The time needed for complete training of one neural net
was about 13 hours on four computers.

5. COMPARISON OF PROBABILISTIC AND
BOTTLE-NECK FEATURES

The first test of bottle-neck features quality is the comparison of
classification accuracy of the neural net with bottle-neck and 4-layer
MLP. Tab. 1 shows the cross-validation accuracies at the end of the
training. The CV accuracy of the 4-layer MLP is 51.0%. So the
bottle-neck neural nets are loosing about 3% in classification accu-
racy. If we compare these numbers with mostly used 3-layer MLP
which has accuracy of 49.3%, the results are not bad mainly if we
consider that for the classification of bottle-neck features, only 30%
of MLP parameters are used.

Second test of the bottle-neck features quality is their perfo-
mance in the LVCSR. They are compared to probabilistic features
of the same size. In probabilistic features, the HLDA reduces the
135 dimensions of the neural net output to the desired size. The
WERs of both features are shown in Tab. 2.

Finally, the performance of individual feature streams is tested.
The results are shown in Tab. 3.

As mentioned above, the recognition constants are tuned for
each dimensionality and each feature kind to give the lowest WER.
Since there is no development set in our experimental setup, the tun-
ing is done directly on the test set.

6. CONCLUSIONS AND DISCUSSIONS

The validation of classification performance of neural net with
bottle-neck was done first. The cross-validation accuracy of five-
layer MLP with bottle-neck is only about 3% worse than the classi-
fication accuracy of four-layer MLP. The drop in classification accu-
racy decreases with growing bottle-neck size. It means that more rel-
evant information is available for classification in more dimensional
bottle-neck. Considering that only 30% of all neural net parameters
are used for classification of bottle-neck outputs, the classification
accuracy is quite high.

The expected good performance of bottle-neck features com-
pared to probabilistic features was confirmed in second test. In
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LVCSR of meetings, they outperform the probabilistic features for
all feature sizes by at least 0.5% which is good improvement for
given task. The performance of both features kinds is increasing
with the increasing size of features obtained from neural nets. The
best performance is found for 35 neural net outputs: 74 dimensions
in whole feature vector when probabilistic/bottle-neck features are
used in combination with PLP features. Further increase of vector
size does not bring improvement in WER.

Next, the recognition using only one feature kind was per-
formed. The proposed bottle-neck features perform the best from all
three feature kinds. Also, the probabilistic features outperformed the
HLDA PLP features. This is actually the first time we have seen that
probabilistic features outperform the PLP ones in LVCSR task. The
WER is decreasing with increasing feature size when probabilistic
or bottle-neck features are used itself. This shows that more of rel-
evant information is passed from MLP to GMM-HMM system. But
from the results with combined features we see that this information
is partly present in the PLP features, as the increase of feature vec-
tor size above certain value does not bring further improvement in
WER.

Finally, we performed experiments, where dimensionality of
bottle-neck features was decreased by HLDA. As primary features,
the bottle neck features of size 45 we chosen because they contain
most of the information needed for classification as can bee seen
from recognition results with individual kinds of features. While di-
mensionality reduction by HLDA brings slight improvement when
only bottle neck features are used, no improvement or slight degra-
dation is observed when used in combination with PLP features.

This suggests, that HLDA can pick up better information for
subsequent GMM-HMM system but such information is already pre-
sented in PLP stream and the complementarity of the streams is
partly lost. This behavior is caused by the choice of classes used
in both techniques – MLP uses the states of context independent
phonemes as targets, whereas HLDA accumulates statistics for the
context-dependent tied states which are much closer to the targets
modeled by GMM-HMM system.

The reduction of system size is also gained when bottle-neck
features are used instead of probabilistic features. Only 70% of five-
layer MLP is used to generate the bottle-neck outputs. Further, the
following HLDA matrix is also smaller.
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