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ABSTRACT

We propose a duplex theory of spike coding in the early stages
of the auditory system based on the intensity and noise lev-
els of the acoustic stimuli. According to this concept, at low
intensity levels, where auditory nerve firings cannot gener-
ate a high enough synchrony among neuron ensembles, rate
coding is more likely favored against phase-locking via syn-
chrony coding. To the contrary, at conversational intensity
levels, phase synchrony coding is preferred due to its superior
and highly noise robust performance. The theory is supported
by both evidence from biology, as well as from experimental
simulations using biologically plausible models of the entire
processing chain from spike generation to recognition.

Index Terms— Spike coding, phase synchrony, speech
perception, audition, psychoacoustics

1. INTRODUCTION

One of the ultimate goals of this research is to develop possi-
ble process descriptions to explain simple recognition mech-
anisms in the less complex levels of the auditory system. In
order to accomplish this goal, one must decide on many dif-
ferent system parameters regarding the tools and the architec-
ture. Our previous work introduced a biologically plausible
algorithm for vowel recognition exclusively utilizing spikes in
both the feature extraction and recognition stages [1]. The hy-
pothesis suggested that one of many reasons why humans are
exceptionally robust to noise for acoustic recognition tasks,
lies within the redundancy of action potentials from many
nerve fibers in the form of phase synchrony. We compared
this biologically plausible algorithm to a typical speech recog-
nizer with well-known Mel Frequency Cepstrum Coefficients
(MFCC) [2]. The results supported this belief by demonstrat-
ing the superior and highly noise robust performance of syn-
chrony coding combined with a spike-based rank order clas-
sifier.

This paper explores the information potential and robust-
ness of different spike coding schemes, along with phase syn-
chrony coding, for the early stages of the auditory pathway.
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Fig. 1. The front-end, speech-to-spike conversion block

Recent research has introduced different spike based classi-
fiers such as liquid state machines (LSMs), temporal integra-
tors with transient synchrony and rank order coding (ROC)
[31, [4], [5]. Different from the ROC classifier of the initial
algorithm, an LSM with supervised learning is used for bet-
ter generalization and to see the degree of correlation between
the performances of coding schemes and particular system ar-
chitectures.

2. SYSTEM ARCHITECTURE

The front-end of the algorithm, shown in Figure 1, converts
acoustic stimuli to spike trains in the auditory nerve fiber.
First, the speech is filtered through a series of gamma-tone
equivalent rectangular bandwidth filters and the spiking prob-
abilities are obtained by passing the filter bank output to the
Meddis Hair Cell Model (MHCM) [6], [7]. This is followed
by the feature extraction where different spike coding schemes
are employed to obtain the temporal and spectral features of
the generated spike trains. Finally, these features are passed
on to the spike-based classifier.

2.1. The Meddis Hair Cell Model

The MHCM physiologically formulates the transduction of
acoustic stimuli to neural signals observed in the auditory
nerve fiber. According to the model, the sound pressure waves
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Fig. 2. The basic flow diagram for a generic LSM with super-
vised learning algorithm

are first converted into mechanical motion at the basilar mem-
brane to which hair cells are attached. Hair cells are deflected
by the basilar membrane motion which results in changes in
the permeability of the cell membranes. This is followed by
the release of neurotransmitters into the synaptic cleft which
starts the typical process of action potential generation. The
model associates the amount of neurotransmitters in the synap-
tic cleft to the probability of spike generation with a function
derived from real experimental data.

The particular model used in this paper also accounts for
the non-linear responses typically observed in the auditory
system such as adaptation and the temporal properties of the
human auditory pathway [7].

2.2. Liquid State Machine with Supervised Learning

The concept of using the inherent transients of high dimen-
sional dynamic structures to perform computational tasks, was
first introduced independently by Maass and Jaeger in the
form of liquid state machines (LSM) and echo state networks
respectively (ESN) [3], [8]. Where LSM uses randomly con-
nected spiking neural circuits to carry the input to a higher
dimension, ESN makes use of the multi-layer neural network
architecture with much larger hidden layers and denser recur-
rent connections. This paper chooses to implement LSM for
its spike-based classification, however please note that one
can also use ESN in a similar way by converting spike train
inputs to continuous signals via low-pass filtering or exponen-
tial kernels.

For the thorough analysis and formulation of LSM dy-

namics the reader is referred to the original paper by Maass
[3]. Figure 2 provides the flow diagram for a generic LSM
with supervised learning block. The input vector, u(?) , which
might be a train of spikes, a rate code, or a degree of syn-
chrony map for the application in this paper, is passed onto
the neural microcircuit with random recurrent connections via
randomly distributed dynamic spiking synapses. The basic
idea relies on the assumption that at any given time #, the
state of the liquid (neural microcircuit) holds all the neces-
sary information about the current and past inputs. This state
information is mapped by the memoryless readout functions
to desired outputs with a supervised learning algorithm. More
formally,
X(t) = NMC(d(t))

where NMC is the neural microcircuit or the liquid filter which
operates on the input vector. The state vector is then mapped
to a desired output vector via memoryless readout functions,

gdesired(t) - FlM(X(t))
which are trained using a supervised learning algorithm. This
paper implements a backward-propagation algorithm to train
the readout functions. Section 4 discusses the implementation
of LSM in the overall model in more detail.

3. SPIKE CODING SCHEMES

Three common spike coding schemes are investigated: rate
coding, explicit time coding and phase synchrony coding. The
goal is to determine the information potential and noise ro-
bustness of these schemes for the early stages of the auditory
pathway, given a simple acoustic classification task.

3.1. Rate Coding

A rate code basically implies that the frequency of spike oc-
currence is a means to carry information. This has been proven
to some extent via physical experiments [9]. In order to find
the rate, the spike count can be averaged over time (rate as
spike count), several experimental trials (rate as spike den-
sity) or populations of neurons (rate as population activity).

Experimental evidence shows that rate coding is not re-
liable at normal conversational sound pressure levels (SPL)
(60dB) as most nerve fibers are saturated (firing as fast as
they can), which eliminates the possibility to differentiate be-
tween two different acoustic stimuli [10]. This paper raises
the question whether it is still a viable technique for low in-
tensity acoustic inputs with an SPL around 10dB.

3.2. Explicit Time Coding

Explicit time coding is a member of the temporal coding class
which include many schemes ranging from time-to-first-spike
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Fig. 3. Spike train outputs for a set of 10 hair cells

coding to phase coding. Explicit time coding implies the di-
rect use of spike firing times without enforcing any kind of
coding scheme. This corresponds to using all of the timing
information by inputting the spike train outputs of all the 20
channels of the cochlea to the neural microcircuit via ran-
domly distributed synapses.

3.3. Synchrony Coding

In most basic terms, synchrony coding groups neurons with
similar firing times. This type of coding has been studied
extensively in literature and it is common consensus that syn-
chrony plays a significant role in the group communications
of neurons [11].

To explain synchrony coding, let us start with a simple
example where the vowel /iy/ as in “beet” is presented as the
acoustic input stimuli to a set of hair cells with characteristic
frequencies around 300Hz. Figure 3 shows the output spike
trains for such a set of 10 neurons. Even though there are
many different definitions of synchrony, the one used in this
paper is the “spectrum of inter-spike time interval histogram’.
We further define the magnitude of this spectrum as the “de-
gree of synchrony” which is shown in Figure 4. As the figure
indicates, even with such a noisy input signal (5dB SNR) the
neurons are still able to phase lock to the first formant fre-
quency of the input vowel at 310Hz.

4. TEST SETTINGS AND RESULTS

To measure the robustness and information potential of each
coding scheme a simulation experiment is performed to try
and identify the vowel class of an utterance from 5 possi-
ble classes /iy/, /ae/, /aa/, /ao/ and /uh/ as in “beet”, “bat”,
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Fig. 4. Magnitude spectrum of the inter-spike time interval
histogram

“hot”, “bought”, “foot”. The results are also compared to a
baseline classifier which employs MFCC features and a near-
est neighbor classifier (MFCC /w INN) to perform the same
task. Training (200) and testing (200) vowels for each class
are chosen from the commonly used TIMIT database such
that they are multi-speaker and multi-gender.

For the overall system model, the 20 output channels of
the MHCM are supplied to the LSM via random dynamic
synapses as vectors of firing rate (RC as in rate code, ana-
log), degree of synchrony (DoS, analog) and exact spike tim-
ings (EST, digital) respectively. The analog inputs are con-
nected to the neural circuit via analog synapses modeling the
membrane potential, whereas the digital input for EST is con-
nected via spiking synapses. The neural microcircuit is cho-
sen to be a randomly connected neural circuit with 150 ex-
citatory (80%) and inhibitory (20%) leaky integrate-and-fire
neurons. The state of the neural circuit is found by low-pass
filtering the spiking outputs of all 150 neurons (F.=200Hz).
For 5 vowel classes, the readout function was chosen to be
a single hidden layer feed-forward neural net, trained with
backward propagation algorithm to output an analog value be-
tween zero and five depending on the input class. Finally, the
results also include the performance of phase synchrony cod-
ing when used with a rank order decoder (DoS /w ROC) [1].

The algorithm is tested with both pink and white noise for
3 noise levels ranging from 25dB to 5dB SNR. Finally the
tests are performed at both 10dB (low intensity) and 60dB
(typical conversation) sound intensity levels.

The results are provided in tables 1 and 2 for pink noise
(white noise performances are very similar and thus omit-
ted). Table 1 shows the results for a low input intensity
value (10dB SPL). Even though all three schemes perform
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Table 1. Percentage of vowels correctly classified at 10dB
SPL

SNR in dB
Scheme 25 10 g
RC | 77.9% 74.2% 63.0%
DoS | 76.2% 71.6% 58.4%
EST | 77.8% 72.0% 59.8%

Table 2. Percentage of vowels correctly classified at 60dB
SPL

SNR in dB
Scheme 25 10 g
RC | 36.2% 35.4% 35.2%
EST | 80.2% 72.5% 64.9%
DoS | 79.8% 77.0% 76.6%
DoS /w ROC | 80.6% 80.2% 79.9%
MFCC /w INN | 80.3% 71.1% 69.8%

similarly at high SNR levels, the performances of EST and
DoS degrade faster than RC with increasing noise. There are
two explanations for this phenomenon. First of all, both EST
and DoS require as many spikes generated by the real acous-
tic input as possible to code information effectively which is
not the case for 10dB SPL. Moreover, at low intensity values,
phase synchrony is easier to occur at low frequency channels
rather than at high frequency channels. Hence, when noise is
introduced to some of the low frequency channels where there
is no real spectral content from the actual acoustic input, the
randomly generated synchrony might negate the contribution
of real synchrony happening at higher frequencies. This is not
true for rate coding, because at 10dB SPL, the firing rates for
every channel change almost linearly with changes in acoustic
input intensity. Moreover, inherent averaging over time also
contributes to its higher performance under noise.
Nevertheless, as indicated in Table 2, for typical con-
versational intensity levels around 60dB SPL, DoS signifi-
cantly outperforms other coding schemes as well as the base-
line classifier, especially at low SNR values. The close-to-
chance performance of RC is expected as most nerve fibers
are saturated at 60dB SPL. A system highly depending on the
exact spike timings, EST, is likely to fail as well at low SNR
values. As the last three rows signify, regardless of the sys-
tem architecture, DoS drops only slightly (2%-3%) in per-
formance with a change of 20dB in the SNR value whereas
the performance of the baseline classifier drops by 11%.
Future goals include a computational complexity vs. per-
formance comparison for engineering purposes. However,

preliminary analysis for the proposed DoS feature extraction
technique indicates roughly the same number of computations
when compared to MFCC extraction: same number of filter-
banks, synchrony detection via histogram FFT vs. decorrela-
tion via discrete cosine transform, etc.

5. CONCLUSIONS

The information potentials of different spike coding schemes
are investigated for early levels of auditory processing. For
high intensity signals synchrony coding displays a superior
and noise robust performance when compared to other cod-
ing schemes. This is expected, regarding the fact that most
nerve fibers are saturated during normal conversational lev-
els. For low intensity signals, rate coding starts to regain its
information potential and manages to outperform synchrony
coding, however by a small margin. This suggests a duplex
theory of spike coding, correlated with the intensity and noise
levels of the input stimuli, and with more emphasis on phase
synchrony because of its robustness and high performance at
typical conversational intensity levels.
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