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ABSTRACT 

This work reports recent progress towards the development of a 
pilot system for automatic identification of singing insects. We 
propose a sound parameterization technique that is designed ex-
plicitly for the needs of acoustic insect recognition. It is combined 
with state-of-the-art classification methods that dominate speaker 
recognition technology. Specifically, the categorization of acoustic 
emissions of insects takes place on the levels of suborder, family, 
subfamily, genus and species. We evaluate the performance of our 
approach on a large and well-documented catalogue of recordings 
of crickets, katydids and cicadas. Identification accuracy that ex-
ceeds 98 % on the levels of suborder and family, and 86 % on the 
level of specific species out of 313 species is reported.   
 

Index Terms— Biomedical acoustics, biological control sys-
tems, animals 

1. INTRODUCTION 

Although a considerable number of studies have been devoted to 
the acoustic communication of insects (see [1] and the references 
therein), automated species identification has been considered just 
a marginal field of pattern recognition and literature on this subject 
is sparse. In brief, acoustic identification of insects is based on 
their ability to generate sound either deliberately, as a means of 
communication (details in section 2), or as a by-product of eating, 
flying or locomotion. Provided that the bioacoustic signal pro-
duced by insects follows a consistent acoustical pattern that is 
species-specific, it can be exploited for detection and identification 
purposes. Specifically, this has been well documented in [2] where 
Riede shows that insect sound emissions provide a reliable taxo-
nomic clue and thus can be used to measure biodiversity.  

The practical significance and potential applications of auto-
mated identification of insects comes from the following facts:  
a) Insects have great economic importance as beneficial organisms 

in agriculture and forestry (they play a significant role in the 
food chain of other species and the fertility of plants). However, 
a number of insect species also have negative impact on agricul-
tural economy as they constitute a devastating threat to plants 
and crops. 

b) The manual detection and identification of insects is in most 
cases a highly complex and expensive procedure, which in-
volves human experts. Moreover, insects are heard more often 
than seen or trapped (especially those that live in complex envi-
ronments or demonstrate nocturnal activity).  

c) The development of human expertise to capture taxonomic in-
formation is costly both in time and money and requires the con-
struction of expensive reference collections of fragile insect 
specimens and comprehensive literature sources [3].  

d) Non-experts experience great difficulty practicing taxonomy 
while participating in the construction of biological inventories 

even for routine identifications. 
e) The diversity of whole animal communities is endangered by 

urban expansion. The existence and density of the population of 
certain species is directly dependent on pollution levels, climatic 
change and urban design. Therefore, inventorying and monitor-
ing of such species is a way to identify disturbance and biodi-
versity unbalance in a non-intrusive way. 

Thus, the novel application area that is related to this work in-
cludes: (a) automatic environmental monitoring and inventorying 
of the biological diversity of a designated area; (b) viability analy-
sis of endangered populations, (c) habitat health assessment and 
deterioration as certain species are indicators of habitat quality and 
conservation; (d) detection and early warning of pests that are 
dangerous for agriculture; (e) recognition and taxonomy of a wide 
range of taxa by non-specialists, etc. 

In the present work, we address the challenges of acoustic 
monitoring of singing insects by employing well-proven method-
ology that dominates in human speech processing tasks.  We deem 
that there is ground for cross-fertilization between the fields of 
automatic speech/speaker recognition and acoustic insect recogni-
tion, as they have in view harmonizing objectives, and only differ 
in the origination of the acoustic emission they reckon on.  How-
ever, the signal processing methods involved in these speech proc-
essing tasks are adapted here for the specifics of insect recognition. 
Specifically, the signal parameterization technique that we propose 
although inspired by the feature extraction process of speech rec-
ognition is designed explicitly for the needs of acoustic recognition 
of insects.  This signal parameterization combined with state-of-
the-art statistical classification techniques [4-6] constitute the core 
of the insect recognition system that we are developing.   
 The present work reports identification results on the louder 
insects (i.e., crickets, cicadas and katydids). We aim at identifying 
specific families and subfamilies of insects, as well as identifying 
the particular species. We evaluate our approach on the singing 
insects of the North America collection (SINA) [7] that have been 
tagged by scientists of considerable experience in identifying the 
taxonomy of insects.  

2. HOW AND WHY DO INSECTS COMMUNICATE 

The sound production mechanism in insects can be summarized as 
muscle power contraction leading to mechanical vibration of the 
sound-producing structure and finally to acoustic loading of this 
source and sound radiation [8-9]. Sound is produced by insects in 
five different ways [10]:  
1. Stridulation: the friction of two body parts; usually heard as 

chirping, (crickets, katydids, grasshoppers, bugs, beetles, 
moths, butterflies, ants, caterpillars, beetle larvae, others).  

2. Percussion: by striking some body part, such as the feet (band-
winged grasshoppers), the tip of the abdomen (cockroaches), or 
the head (death-watch beetle) against the substrate usually 
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heard as tapping or drumming.  
3. Vibration: the oscillation of body parts such as wings in the 

air; usually heard as humming or rumbling (mosquitoes, flies, 
wasps, bees, others).  

4. Tymbal Mechanism: the quick contraction and release of tym-
bal muscles (vibrating drum-like membranes); usually heard as 
a series of clicking sounds (cicadas, leafhoppers, treehoppers, 
spittlebugs). 

5. Air Expulsion: the ejection of air or fluid through a body con-
striction; usually heard as a whistle or hiss (cockroaches, short-
horned grasshoppers). 

There are a specific number of behavioural modes that have been 
observed in connection with sound production in insects. In par-
ticular, males, females and immature insects produce acoustic 
emissions that can be classified in four distinct categories [10]: 

a) The congregational songs: The congregational song is a song 
produced in chorus and its main purpose is to cause male and 
female adults to congregate (cicadas). Figure 1. Typical sound patterns of insects. Top row: (a) cricket 

Anaxipha n. sp. A (subfamily Trigonidiinae), (b) cicada Neo-
cicada hieroglyphica (subfamily Cicadinae), (c) katydid Am-
blycorypha cajuni (subfamily Phaneropterinae). Bottom row:
corresponding spectrograms of the time-domain signals. 
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b) The calling songs: These constitute the first step in pair for-
mation and are used to attract females at long range into close 
proximity (e.g. crickets and cicadas produce mating songs). 
Some females also produce a sound that will help the male to 
locate her (slant-faced grasshoppers), or in response to the 
males (katydids). 

c) The courtship songs: These are produced at short range by 
males and aim to attract a responsive female before mating. 
Singing males switch from calling singing to courtship singing 
as soon as a female approaches within one meter (cicadas).  

d) The protest squawks: These sounds declare disturbance either 
because the insect is captured or disturbed in flight or the male 
insect wants to let other males know that they are in his terri-
tory (generally called warning, intimidation or fight sounds). 
This sound response can also be used to warn other insects of 
danger. The squawks are more or less arythmical. They are 
species-specific as the frequencies and the rate of vibration of 
the tymbals (in cicadas) and stridulation organs (crickets, katy-
dids) are distinct. 

2.1. Crickets 
Male crickets produce sounds by stridulating -- rubbing their 
wings together. They produce a short repertoire of consistent 
acoustic patterns, which are characterized by a modulation around 
a dominant frequency. Their sound pattern consists of pulsations, 
well localized both in time and frequency. In some species these 
impulsive sounds form packets (phrases), which are repeated 
rhythmically (see Fig. 1(a)). Finally, the pulsations per unit time 
are dependent on the environmental settings (e.g., temperature, 
humidity) while the fundamental remains fairly unchanged even in 
different behavioural modes. 

2.2. Cicadas 
Male cicadas emit sound by vibrating their tymbal mechanism. 
The acoustic pattern of these sounds is characterized by groups of 
pulses with a distinguishable amplitude modulation pattern (see 
Fig. 1(b)). The sound covers the frequency range [2, 22] kHz. Fe-
males do not produce consistent acoustic emissions like males. 
Instead, in response to male calls they produce short-duration, 
broad-band acoustic signals called female wing flick signals. These 
signals are consequences of quick vibration of the wings, and their 
timing in relation to the male call is species-specific. Males per-
ceive both the visual and acoustic clues of the wing flick. 

2.3. Katydids 
Katydids (also known as long-horned grasshoppers and bush 
crickets) utilize a stridulation mechanism and, in some cases, may 
produce tones by exciting a resonance in a tegmen (one of the front 
pair of wings). Each wing stroke produces a pulse of sound in a 
katydid’s chirp. The male’s calling sound is a regular repetition of 
multi-pulse chirps or phrases and the females chirp (in some spe-
cies females can also stridulate) in response to the song of the 
males [11-12]. The sound pattern is comprised of a sequence of 
clicks with relatively short inter-click intervals where a click is a 
single transient-like acoustic event (see Fig. 1(c)). Some calling 
songs of males contain several components produced in varying 
temporal sequences. Katydids are nocturnal singers. 

3. AUTOMATIC INSECT RECOGNITION 

Earlier studies [1-3] found out that some of the most essential 
acoustic clues for differentiation among the various families, sub-
families,  genus and species of insects are: (a) dominant harmonic, 
(b) rhythm and duration of pulsations, (c) spread of spectral energy 
around the dominant harmonic, (d) energy of the overtones.  We 
utilize this knowledge for the purpose of acoustic identification of 
insects.  Specifically, in Fig. 2 we present a diagram illustrating 
the acoustic insect recognition process that is employed in our 
system. This process consists of two main steps: signal parameteri-
zation and classification. While the parameterization aims at com-
puting descriptors, which account for the useful information in the 
signal, the classification stage compares the unlabelled input fea-
ture vectors with predefined statistical models of the target classes. 
A decision is made depending on the degree of proximity between 
the input and the models.   

In brief, our signal parameterization approach is based on vari-
able-length framing, which considers each active part of the signal 
(corresponding to bursts of pulsations) an independent event. In 
the following, we describe the variable-length segmentation and 
signal parameterization steps: 
Step 1: Pre-processing of input signal: It consists of mean value 
removal and amplitude normalization through automatic gain con-
trol applied to the time-domain signal. 
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Figure 2. Diagram of the acoustic insect recognition process for N distinct classes 

Step 2: Variable-length segmentation: It is based on a detector of 
acoustic activity, which estimates the energy Euse for a frame of  K 
successive samples as:  

2

1

( ) ( ) ,   0,..., 1,
K

use
i

E k x kL i k M   (1) 

where x is the input signal, k is the group index, L is a predefined 
step size that defines the degree of overlapping between two suc-
cessive frames, and  

( ) /M N K L L      (2) 

is the number of frames in a recording with length N samples. The 
operator  stands for rounding towards the smaller integer value. 
Since the subsequent estimates of the energy are for overlapping 
groups, the precision of border detection depends on the step size 
L. In the present work, we consider L=5 (equivalent to time resolu-
tion ~113 sec at 44100 Hz sampling frequency), which provides a 
good trade-off between temporal resolution and computational 
demands. For obtaining a smooth estimation of Euse(k) we used a 
group size K=110 samples, which corresponds to frame size of 2.5 
milliseconds. Finally, the Euse(k) contour is thresholded with hys-
teresis to detect the boundaries of acoustic activity. 
Step 3: Estimation of the signal descriptors: Each active segment 
is subjected to short-time discrete Fourier transform (DFT). The 
sample size of the DFT equals the size of the segment. When the 
length of a segment is smaller than 2048 samples, we perform zero 
padding. In order to reduce the computational demands an upper 
bound of 1.5 seconds per segment was set. Furthermore, we apply 
a filter-bank consisting of B=200 equal-bandwidth and equal-
height filters on the logarithmically compressed power spectrum, 
considering the frequency range [2, 22] kHz. We have chosen 
linear spacing (equal frequency resolution) because insects, in 
general, can produce sounds in frequencies anywhere in the acous-
tic spectrum (and some at ultrasound), in contrast to the human 
speech signal where most of the energy is concentrated in the low-
frequency formant area. The lower bound of 2 kHz was imposed to 
eliminate the majority of interferences from the environment. The 
centres of the linearly spaced filters are displaced 100 Hz one from 
another, and serve as boundary points for the corresponding 
neighbouring filters. Subsequently, the log-energy filter-bank out-
puts Xi are subject to the discrete cosine transform (DCT): 

1

cos ( 1 2) ,    0,..., ,
B

j i
i

LFCC X j i j J
B

  (3) 

where j is the index of the linear frequency cepstral coefficients 
(LFCC). A series of feature selection tests have indicated that the 
first 24 (J=23) cepstral coefficients provide a good trade-off for the 
recognition task. However, in all experimentations reported here 
the 0-th cepstral coefficient was excluded from the feature vector 

Finally, for each segment the composite feature vector is de

as we did not want any dependence on the field recording setup.  

-
sign

tion 

 feature vectors are 
fed 

4. EXPERIMENTS AND RESULTS 
In order to pro ur automatic 

niidae, Propha-

crickets) {Eneopterinae, 

ets from subfamily Nemobiinae {Allonemobius, 

    

; 14 katydid species 

 

ed by appending the: (a) dominant harmonic fd that is esti-
mated via search of the maximum magnitude in the power spec-
trum, (b) segment duration lseg in seconds, and (c) 23 LFCCs.  
Step 4: Post-processing of the features: Cepstral mean subtrac
(CMS) is applied on the LFCCs, and dynamic range normalization 
(DRN) is applied on the entire feature vector.  

As presented in Fig. 2, the post-processed
to the classification stage. For each target class an individual 

model was build. In the present work we consider: (a) Probabilistic 
Neural Network (PNN)-based [4], (b) Gaussian Mixture Models 
(GMM)-based [5], and (c) Hidden Markov Model (HMM)-based 
[6] classifiers. GMMs and HMMs are trained based on a standard 
version of the expectation-maximization algorithm [5-6] provided 
by P. Baggenstoss at http://www.npt.nuwc.navy.mil/Csf/. 

vide an efficient evaluation scheme of o
insect identification system, we utilized several corpora of insect 
recordings with known and reliable identification tags [7, 13].  
According to our intention to evaluate two alternative schemes 
(straight and hierarchic) for insect recognition, we defined datasets 
that serve a number of experiments. In the straight scheme, an 
unlabelled recording is compared to the model of each species. In 
the hierarchic scheme (refer to Fig. 3) we are trying to identify the 
groups and subgroups to which the unlabelled recording belongs. 
The hierarchical scheme delivers some more information for the 
cases when the specific species cannot be identified. Specifically, 
in the experimentations we aimed at the identification of:  
 2 suborders {Auchenorrhyncha  and Ensifera}, 
 4 families {Gryllidae, Gryllotalpidae, Tettigo
langopsidae} from suborder Ensifera,  

 6 subfamilies from family Gryllidae (
Gryllinae, Mogoplistinae, Nemobiinae, Oecanthinae, Trigonidii-
nae}; 5 subfamilies from family Tettigoniidae (katydids) {Cono-
cephalinae, Copiphorinae, Phaneropterinae, Pseudophyllinae, 
Tettigoniinae}, 

 4 genus of crick
Eunemobius, Neonemobius, Pictonemobius}; 7 genus of katydids 
from subfamily of Phaneropterinae {Amblycorypha, Arethaea, 
Dichopetala, Insara, Inscudderia, Microcentrum, Scudderia};  
4 genus of cicadas from family Cicadidae {Diceroprocta, Magi-
cicada, Okanagana, Tibicen}, 

 7 cricket species from genus Allonemobius
from genus Amblycorypha; 7 cicada species from genus Tibicen, 

 and a pool of 313 species (either cicadas, crickets, or katydids). 
The datasets employed in these experiments were designed by
using the holdout method, which builds train and test subsets com-
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posed of non-overlapping parts of the available corpora [7, 13]. 
The experimental results are presented in Tables 1 and 2. T

Figure 3. The hierarchical scheme for insect recognition 

he 
sig

. Identification accuracy in percentage for the straight 

 Comment

n “x” in some cells denotes these experiments that were not 
performed due to lack of data. In the straight scheme (Table 1) the 
PNN and GMM classifiers outperformed the HMM one. One rea-
son is that when compared to PNNs and GMMs, HMMs require 
significantly larger amounts of training data in order to build reli-
able models. Although in the straight scheme the PNN and GMM 
classifiers made an equal number of errors they differed in the 
misclassified species. On the other hand, the HMMs, mainly due to 
their capability to model temporal sequences, outperformed the 
GMMs and PNNs at the most levels in the hierarchic scheme (Ta-
ble 2). At some levels of hierarchy (see level genus for cicadas and 
katydids, subfamily for crickets) the PNNs exhibited competitive 
performance when compared to GMMs and HMMs. However, 
averaged for all experiments the GMM-based classifier demon-
strated better identification accuracy than the PNN-based one.  
 
Table 1

(brute force) approach – all 313 species 
PNN GMM HMM 

313 species cicadas, crickets, katydids 86.3% 86.3% 75.2% 
 

. Identification accuracy in percentage for the hierarchic 

 ments 

Table 2
approach – the categorization of unlabelled input is per-
formed top-down following the hierarchy. 

PNN GMM HMM Com
Suborder  Auchenor98.6% 98.1% 98.5% rhyncha or Ensifera
Family 98.0% 95.1% 95.1% 4 families (suborder Ensifera)

Fam ) 
Comments 

ily Cicadidae  (cicadas
 PNN GMM HMM 
Subfamily 1 subfa ninae) x x x mily (Tibice
Genus 97.9% 94.4% 97.9% 

 
4 genus (family Cicadidae) 

Species 85.7% 100% 83.3% 7 species (genus Tibicen) 

Fam
Comments 

ily Gryllidae  (crickets) 
Crickets PNN GMM HMM 
Subfamily  subfam llinae) 99.5% 97.4% 99.7% 6 . (family Gry
Genus 90.2% 93.8% 93.8% 4 genus (subfam. Nemobiinae)
Species 95.7% 100% 100% 7 species (gen. Allonemobius)

Fam ids
 Comments 

ily Tettigoniidae  (katyd ) 
Katydids PNN GMM HMM
Subfamily  subf. (f oniidae)91.3% 92.6% 94.3% 5 amily Tettig
Genus 78.6% 71.1% 48.5% 7 genus (s. Phaneropterinae)
Species 71.4% 85.7% 50.0% 14 species (g. Amblycorypha)

5. CONCLUSION 

In this work we addre e atic acoustical identi-
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