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ABSTRACT 

 
Grapheme-to-phoneme (G2P) conversion is an important 
component in TTS systems. The difficulty in Chinese G2P 
conversion is to disambiguate the polyphones. In this paper, 
we formulate the polyphone disambiguation problem into a 
classification problem and propose a language independent 
classifier based on maximum entropy to address the issue. 
Furthermore, we introduce inequality smoothing to alleviate 
data sparseness and exploit language independent character 
features as linguistic knowledge. Experimental results show 
that the character features perform as well as the language 
dependent features such as words and part-of-speech, com-
pared with the widely-used Gaussian smoothing, the ine-
quality smoothing can greatly reduce the active features 
used in the classifier and achieve better performance. Our 
classifier achieves 96.35% in term of overall accuracy, 
greatly superior to 81.22% by using high-frequent "pin-
yin"(Romanization of Chinese phoneme). Finally, we ex-
plore to merge all key polyphones into 6 groups and find 
that the overall accuracy only decreases about 2% and the 
active features are reduced more than 33% further. 
 
 Index Terms—Grapheme-to-phoneme conversion, 
Maximum Entropy, Inequality Smoothing, Polyphone, Char-
acter Features 
 

1. INTRODUCTION 
 
Grapheme-to-phoneme (G2P) conversion is an important 
module in TTS systems, correct G2P conversion is the pre-
requisite to subsequent acoustic processing. Although many 
approaches including finite state transducer (FST) [5] and 
HMM [8], have been successfully applied to this task in 
alphabetic language such as English and French, they can 
not be transferred directly to pinyin language like Chinese 
and Japanese, because the formers are used to generate pro-
nunciations for words which are out of vocabulary (OOV) 
and the latter are required to pick out the correct pronuncia-
tions (equal to pinyins in pinyin language) for polyphones.    
    As we known, polyphones existing in Chinese texts can 
be categorized into three types:  

(1) Single-character polyphonic words (SCPW), such 
as �(zhong1, zhong4) in the following sentence: 

    (1) Single-character polyphonic words (SCPW), such 
as � (zhong1, zhong4) in the following sentences: 
    ��/��/��/�(zhong1) (The project is going on). 
    	/�(zhong4)/
/��(He won the big award). 
    (2) Multi-character polyphonic words (MCPW), such 
as �(chao2yang2, zhao1yang2) in following sentences: 
    �(chao2yang2)/�/��/��/��(There is plenty 
of sunlight in the direction of sun rising). 
    ��� /�� /� /�(zhao1yang2)/��(Computer 
software is the sun rising industry). 
    (3) Multi-character monophonic words (MCMW), such 
as ��(ren2shen1) and ��(can1jia1) in the sentences: 
 /!"/#/��/�/$%/�&(Please tell me how to eat 
Panax). 
    �'/��(can1jia1)/
/()*(All joined the semi-
nar). 
    The slashes mark the boundaries of Chinese words. 
Obviously, MCMWs can be disambiguated easily by dic-
tionaries look-up. So we focus on the first two in this paper. 
    At present, polyphone disambiguation is not an easy 
job in general. The common way of doing the job is using 
rules which are either hand-crafted [6] or learned automati-
cally [7] [15], these approaches have three limitations: firstly, 
they do not generalize well to situations which we have not 
encountered. Secondly, these rules are usually language de-
pendent. And thirdly, these rules often use words and/or  
part-of-speech as linguistic features, the errors during word 
segmenting or part-of-speech tagging will propagate to the 
polyphone disambiguation phrase, and these rules cannot 
adapt to different segmentation and tagging standards.  
    In this paper, we propose a maximum entropy (Maxent) 
classifier to disambiguate polyphones. We only use charac-
ter features in the classifier which are language independent 
and easily computed. At the same time, we introduce ine-
quality smoothing to alleviate data sparseness and embed 
feature selection seamlessly during the classifier training. 
Previous studies often process polyphones seperately, this is 
to say, a set of rules are acquired for each polyphone, which 
makes rule acquisition ineffective and the number of rules 
very large. In this paper, we exploit grouping the polyphones 
according to their pinyin frequency distribution. 
    The remainder of the paper is structured as follows. In 
Section 2, we introduce the inequality Maxent classifier. 
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Specially, we describe the smoothing measures and parame-
ter optimization. In Section 3, we enumerate the features 
which may be used for the classifier. We evaluate the classi-
fier in Section 4. Followed by exploiting grouping the poly-
phones in Section 5, we conclude the paper in Section 6. 
 

2. MAXENT CLASSIFIER 
 
In recent years, Maxent modeling [1] has been successfully 
applied in various classification tasks [3] [14]] due to its 
robustness, generality and superior performance. It stipu-
lates that we should select the unique probability distribu-
tion which satisfies all known constraints but assume noth-
ing about what we do not observe so that it maximizes the 
entropy subject to all known observations. In this paper, we 
formulate the polyphone disambiguation problem into a 
classification problem and employ Maxent classifier to ad-
dress it. For a given polyphone, the classifier produces a 
probability for each pinyin and the probability can be calcu-
lated by the equation (1): 

k1P(Seg|C)= exp( f (Seg,C))                                (1)i iZ (C) i
 

    Where C represents the features of the polyphone 
and Seg is one of pinyin candidates of the polyphone. Z (C ) is 

a normalization factor. 
    Standard Maxent requires that for each feature, the fol-
lowing constraint should be satisfied. 

 (2)[ ] [ ]                                                                 =Ep fi Ep fi  
    Where [ ]E p fi represents the empirical expectations of 
the ith feature and [ ] Ep fi is the model expectation.  
    Although the standard Maxent model is already as uni-
form as possible given the above constraints, which allevi-
ates data sparseness successfully, it is prone to over-fitting 
of training data because it also is a kind of maximum likeli-
hood exponential model in certain contexts. Like other 
maximum likelihood methods, when the training data is 
sparse, smoothing is indispensable [11].  
 
2.1. Gaussian Smoothing 
Several smoothing algorithms have been proposed to over-
come data sparseness and Chen and Rosenfeld [11] demon-
strate that Gaussian smoothing performs as well as or better 
than all others. The Gaussian prior aims to penalize the fea-
tures with excessively large or small weights using the 
equation (3); it is essential of relaxing the equality con-
straints in equation (2), which makes the model fit the train-
ing data less exactly.  

2[ ] - [ ]                                        ( 3 )=
i

i p i

i

E p f E f
λ

σ
 

2.2. Inequality Smoothing 
Recent progress on Maxent smoothing is inequality 
smoothing [2], it violates the equality constraints in equation 
(2) as follows: 

 ( > 0 > 0)                                                             (4)

≤ ≤

∧
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    Empirical results demonstrate that it slightly outper-
forms the Gaussian smoothing, so we take advantage of it to 
smooth our classifier and contrast it with the frequently-used 
Gaussian smoothing. What’s more, the inequality smoothing 
makes feature selection seamlessly embedded in parameter 
optimization, which makes the features with a zero weight 
be removed from the classifier without affecting its classifi-
cation behavior, in such way, the active features will be re-
duced greatly. 
 
2.3. Parameter Training 
The parameters i in equation (1) can be optimized with the 
iterative algorithms such as GIS [4], IIS [10] and general 
gradient-based algorithms. Malouf [9] compares these algo-
rithms and reveals that limited-memory variable metric 
(LMVM, a kind of gradient-based algorithm) requires much 
less time and memory on four classification datasets, re-
cently, Kazama and Tsujii [2] utilize BLMVM [12] (a vari-
ant of LMVM) to train the parameters and shows BLMVM 
can converge faster. So we employ it for parameter solving. 
 

3. FEATURE SET 
 
The success of applying Maxent depends to a large extent 
on the selection of suitable feature set. For our purpose, we 
want to exploit the features that are inexpensive to compute, 
language independent and effective as possible. We start 
with an exhaustive list of all features which might be useful 
and decided whether they are used in the classifier by ex-
periments. 
 
Character Features 
(A) Uni-Gram: Cn (n=-5,-4, -3,-2,-1, 1, 2, 3, 4, 5) 
(B) Bi-Gram: CnCn+1 (n=-5,-4, -3,-2, 1, 2, 3, 4) 
(C) Tri-Gram: C nCn+1 Cn+2(n=-5,-3, 1, 3) 
    Where C refers to a Chinese character, it is obvious that 
the character features are language independent and can be 
acquired from the corpus directly; now, the work we need 
do is to validate their effective for the classifier. 
Word and Part-of-Speech Features 
(D) Word: W n (n= -3,-2,-1, 1, 2, 3) 
(E) Neighbor Part-of-Speech: P n (n= -3,-2,-1, 1, 2, 3) 
Part-of-Speech Itself 
Besides the features mentioned above, we observe that the 
part-of-speech of the polyphone itself has strong discrimina-
tive ability for pinyin selection, so we also use it as the lin-
guistic sources for the classifier. 
(F) Part-of-Speech Itself 
 

4. EVALUATION 
 
4.1. Corpus and Key Polyphones 
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There are 804 SCPWs in GKB [13]. After investigating their 
distributions in the 2000th People Daily corpus with pinyin 
transcription annotated. We find 608 SCPWs occur at lease 
once which account for 8.631% of the whole corpus and 
their distributions are similarly to [15]. We choose 76 
SCPWs from the top-270 SCPWs on the condition that the 
occurrence of each SCPW is not less than 100 times and its 
high-frequent pinyin is not more than 98%, the cumulative 
frequencies of the top-270 SCPWs account for 98.45% of all 
the 608 SCPWs. Another 109 MCPWs exist in GKB and 
107 occur at once in the corpus, which accounts for 0.258% 
of the whole corpus. By the similar criterion, we select 31 
MCPWs from top-38 MCPWs whose cumulative frequen-
cies account for 96%. In sum, we choose these 107 key 
polyphones as targets for the classifier to disambiguate. 
    All the samples in the corpus of each target are ex-
tracted and divided into two parts: 70% and 30% randomly. 
The training set and the testing set of each target are ran-
domly extracted from the two parts respectively. For each 
target, we extract at most 3000 samples for training and 
1500 samples for testing.  
 
4.2. Training and Testing 
We train one inequality classifier for each target using the 
features defined in Section 3 and compute Ai and Bi by 
equation (5) as follows: 

i iA = B = W /L                                             (5 )

(L  represen ts th e n u m ber  o f  th e sam p les )
 

    We investigate the width factor W in three points: 1e-2, 
1e-3 and 1e-4, for studying its effectiveness more deeply, 
another range from 0.1 to 1.0 with the step of 0.1 is also 
searched. For each target, we measure the accuracy with the 
percentage correctly classified samples; and we evaluate the 
overall accuracy by averaging the accuracy of each target, 
and the base line is 81.22% when we use the most frequent 
pinyin. 
 
4.2.1. Effect of Features 
We evaluate our classifier with a variety of classifier con-
figurations (different set of features and different ways of 
using features, as indicated in the section 3). Table 1 dis-
plays the experimental results. The first column is the fea-
tures and their combinations and the others are the overall 
accuracy using part-of-speech itself features (F) or not. 
 

Feature Accuracy(-F)  Accuracy (+F) 
A 90.90 96.35 

A+B 90.93 96.35 
A+B+C 90.97 96.36 

D 89.96 96.33 
E 89.68 95.79 

D+E 90.46 96.05 
Table 1: Overall accuracies under each configuration 

     
From the table, some observations can be obtained: 

• The part-of-speech itself can make great contributions 
to performance improvement; comparing the second 
column (using features without the part-of-speech itself) 
with the third column (using the part-of-speech itself) 
under each kind of feature configuration, we find it en-
hances the accuracy by about 6%, which indicates that 
the part-of-speech itself is necessary for the classifier.  

• Character features can achieve competitive performance 
with word and part-of-speech features. It is especially 
meaningful because the character features are language 
independent and have nothing to do with word segmen-
tation and part-of-speech tagging. Another factor we 
should notice that the overall accuracies of D (word 
features), E (part-of-speech features) and D+E (their 
combinations) are obtained on the condition they are 
exacted from annotated corpus, which means all of 
them are correct. If they are obtained by word seg-
menter and part-of-speech tagger, the overall accuracies 
will decrease further. 

• All the configurations we have tested achieve roughly 
the same performance. Among them, the accuracy on 
the part-of-speech features is the smallest, this mean 
that only part-of-speech features are not enough for the 
classifier. And we can conclude that feature combina-
tions have little impact on the performance improve-
ment. 

 
4.2.2. Effect of Smoothing 
To demonstrate the superiority of the inequality smoothing, 
we compare it with the frequently-used Gaussian smoothing. 
We train Gaussian classifier similar to the inequality classi-
fier and search the σ used in equation (3) from 50 to 400 
with the step of 50. Table 2 lists the results on the features A, 
D and E, from which, we confirm that inequality classifier 
slightly outperforms the Gaussian classifier and greatly re-
duce active features. 
 

Accuracy (+F) Feature Number (+F) 
T 

#G #I #G #I Reduction 
A 95.89 96.35 124108 10208 12 times 
D 95.77 96.33 151335 9374 16 times 
E 94.79 95.79 28905 4545 6 times 

Table 2: Inequality smoothing vs Gaussian smoothing 
#G: Gaussian smoothing; #I: Inequality smoothing 

 
5. POLYPHONE MERGING 

 
Up to now, polyphones are usually dealt with separately. For 
applications with memory-constrained environment (em-
bedded TTS on a cell phone for example), such applications 
require a balance between the need for small model, fast 
computation and optimal accuracy. Training each classifier 
for each polyphone requires more memory to load the model 
trained. In this section, we try to merge them into groups 
according to their pinyin frequency distribution. Among the 
107 polyphones, 103 polyphones have two main pinyins and 
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the other 4 have three main pinyins. We merge the 103 into 
5 groups and put the other 4 into the 6th group. Table 3 lists 
the criterion for grouping. 
 

Group The first class The second class 
1st 0<LF<=10% 90%=<HF<=98% 
2nd 10%<LF<=20% 80%=<HF<90% 
3rd  20%<LF<=30% 70%=<HF<80% 
4th  30%<LF<=40% 60%=<HF<=70% 
5th  40%<LF<=50% 50%=<HF<60% 

Table 3: Grouping criterion 
 
    Correspondently, for each group, we merge their train-
ing samples and testing samples together to form the new 
training set and testing set. And we define the low frequency 
(LF in table 3) pinyin as the first class and the higher (HF in 
table 3) as the second class. The same features are used and 
same experiments are conducted. Table 4 shows the overall 
accuracy as well as the number of the active features. The 
results indicate that the performance only decreases about 
2% and the active features are reduced by at least 33%.  
 

Accuracy(+F) Feature Number (+F) 
T 

#M #S #Dec #S #M #Dec 
A 94.71 96.43 1.72 9790 5404 44.8% 
D 94.97 96.40 1.43 9253 6204 33.0% 
E 93.81 95.86 2.05 4462 2674 40.1% 

Table 4: Merging polyphones into 6 groups 
#M: merging; #S: Separate; #Dec: Decrease 

 
6. CONCLUSION AND FUTURE WORK 

 
In this paper, a language independent classifier based on 
inequality Maxent using character features has been con-
structed. To our knowledge, our work is the first attempt to 
employ Maxent to disambiguate polyphones, our work 
demonstrates that the character features can achieve com-
paratively performance with the language dependent fea-
tures such as word and part-of-speech features; we also 
validate the strong discriminative ability of the 
part-of-speech itself; and the inequality smoothing performs 
slightly better than the Gaussian smoothing. With the help 
of its feature selection ability, the unnecessary features can 
be removed from the classification model without changing 
the classification behavior, which makes the classification 
model smaller. Experimental results also reveal that feature 
combinations have litter impact on performance improve-
ment and polyphone merging can reduce active features 
further without decreasing the performance much. But in our 
experiments, we assign the same width factor to each kind 
of feature, which does not make full use of the advantage of 
the inequality smoothing. So employing more sophisticated 
width factor is one of the future works. 
    We believe that our approach can be directly trans-
ferred to other pinyin language like Japanese, and we also 

believe it can handle the polyphonic phenomena in alpha-
betic language such as English and French. For example, the 
word 'record' pronounces as [ ] and [ ] when 
its part-of-speech is noun and verb respectively (For English, 
the character features can be converted into word features). 
related experiments have not been conducted to validate our 
hypothesis because of lack of annotated corpora.  
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