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ABSTRACT

We present a harmonic-plus-noise modelling (HNM) strategy in the
context of corpus-based text-to-speech (TTS) synthesis, in which
whole speech phonemes are modelled in their integrity, contrary to
the traditional frame-based approach. The pitch and amplitude tra-
jectories of each phoneme are modelled with a low-order DCT ex-
pansion. The parameter analysis algorithm is to a large extent aided
and guided by the pitch contours, and by the phonetic annotation
and segmentation information that is available in any TTS system.
The major advantages of our model are : few parameter interpola-
tion points during synthesis (one per phoneme), exible time and
pitch modi cations, and a reduction in the number of model param-
eters which is favourable for low bit rate coding in TTS for embed-
ded applications. Listening tests on TTS sentences have shown that
very natural speech can be obtained, despite the compactness of the
signal representation.

Index Terms— Speech synthesis, speech coding, speech analy-
sis, speech processing

1. INTRODUCTION

In corpus-based TTS, speech is synthesised by concatenating natural
speech segments that are looked up in a large segment database. Es-
pecially for embedded applications, the memory resources are low,
and a compact representation and encoding of the database is of cru-
cial importance. The lower the number of segments in the database,
the more concatenation points and the more frequently the tempo-
ral and spectral properties of the segments will have to be modi ed.
In this respect, a model-based coding strategy, that facilitates the
creation of smooth concatenation and natural sounding speech mod-
i cations, is an extra asset.

In this paper, we describe a speech modelling approach that
can ful l the above requirements, and that is widely known to pro-
duce high quality speech that is almost indistinguishable from nat-
ural speech, namely harmonic-plus-noise modelling (HNM) [1]. In
HNM, a series of sinusoids with harmonic frequencies for the voiced
speech parts is combined with a synthetic noise signal for the un-
voiced parts. HNM can rely on the existence of a broad range of
powerful and exible coding strategies for the parameters of a si-
nusoidal model (SM), and on computationally ef cient sinusoidal
speech synthesis algorithms, which limit the hardware cost for end-
user devices.

∗Kris Hermus is a Postdoctoral Research Fellow of the Institute for the
Promotion of Innovation by Science and Technology in Flanders (IWT-
Flanders), project ‘ESSCorTeSS’.

Apart from the above mentioned intrinsic advantages of HNM,
the application of this model in a TTS context opens some nice per-
spectives for the way we can extract the SM parameters, thereby
signi cantly extending the possibilities of a standard speech mod-
elling and coding application. First, the speech modelling and cod-
ing of the segment database of a TTS system occurs only once and
is performed off-line, such that powerful parameter extraction algo-
rithms can be applied, that either further reduce the number of pa-
rameters of the representation for a given speech quality, or increase
the speech quality for a given number of model parameters. Second,
the sinusoidal analysis can bene t from an accurate pitch labelling
that is always at hand in a TTS system. Third, an accurate phonetic
transcription of the speech utterances is available, which can be ex-
ploited to adapt the parameter extraction to the phoneme at hand (e.g.
type of voicing, transitional speech).

Another major advantage of speech modelling in a TTS frame-
work is the availability of an accurate speech segmentation In this
paper, we fully exploit this property. We are doing away with the tra-
ditional frame-based approach in sinusoidal analysis and synthesis,
and model whole phonemes instead. The given segmentation guar-
antees that the changes of the signal characteristics are minor and/or
only slowly time-varying within one signal segment (phoneme). Dis-
continuities will mainly occur at the signal boundaries. As such, we
are able to construct an accurate signal representation with a limited
number of parameters, that remains valid for a longer time duration.
Due to coarticulation effects, we can expect smooth variations of
both the amplitudes of the speech harmonics and of the pitch within
one phoneme. This will motivate the use of pitch and amplitude
modulation of the sinusoidal components. This so-called long-term
modelling approach has already been described for traditional sinu-
soidal modelling, e.g. in [2] (phase/pitch) and in [3] (amplitude).
The use of long-term modelling signi cantly reduces the need for
parameter-interpolation during synthesis, since only one such inter-
polation will be needed per phoneme, instead of one interpolation
every (say) 10 ms.

2. DCT-BASED AM-FM HNM

Given the phonetic annotation and segmentation of a TTS corpus, we
split every speech utterance into segments, each containing one sin-
gle phoneme. For a particular phoneme segment s[k] (0 ≤ k ≤ N−1)
with sampling frequency fs, we propose the following harmonic-
plus-noise (HNM) model :

ŝ[k] = gh(k).

L(k)X
i=0

ai(k) sin

„
2πi

Z k

0

f0[t]dt + φ0,i

«

| {z }
harmonic part

+ gn(k).n[k]

| {z }
noise part
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Sinusoidal part The choice for a harmonic sinusoidal model in
which the frequencies of all sinusoids are a multiple of the time-
varying fundamental frequency is in correspondence with speech
production, and it signi cantly reduces the number of model param-
eters compared to a traditional sinusoidal model in which the fre-
quencies are not constrained. The parameters of the harmonic part
are :

L(k) time-varying number of harmonics, determined by the voicing
cut-off frequency (see below) at sample k

ai(k) normalised amplitude contour of ith harmonic (DCT-based)
f0(k) DCT-based representation of the pitch contour

φ0,i phase offset of ith harmonic
gh(k) gain function of the harmonic part

The pitch and amplitude modulation is based on a DCT expansion,
which has some clear advantages : ability to model smooth transi-
tions, good interpolation/modi cation characteristics, and low sen-
sitivity to coding errors.
Noise part The noise part is represented by a randomly generated
noise signal n[k], with time-varying bandwidth [L(k)f0(k), fs/2],
with a spectral envelope modelled by a time-varying auto-regressive
(AR) model, and with a gain contour gn(k).
The spectral envelope parameters will be used for both the harmonic
and the noise part, such that the noise gain function gn(k) contains
the only parameters that are exclusively used for the noise part.

3. EXTRACTION OF MODEL PARAMETERS

Number of harmonics The number of harmonics in the SM de-
pends on the voicing type of the phoneme. For unvoiced phonemes,
the sinusoidal part is zero and the HNM reduces to a synthetic noise
signal. For voiced phonemes, the number of harmonics is deter-
mined by a so-called voicing cut-off frequency (VCO) estimation
algorithm. The VCO is de ned as the frequency that separates a
low-frequency harmonic part from a high-frequency noise part. The
number of voiced harmonics is then simply given by the VCO di-
vided by the local pitch frequency, rounded to the closest integer.
Numerous estimation algorithms for the VCO exist, e.g. [4, 1]. In
the context of this work, we derived a new VCO estimation algo-
rithm (see [5]) that yields very smooth and accurate VCO contours
( gure 1). For high quality speech we model the VCO contour with
a low-order DCT expansion. If a lower quality is suf cient, one can
use a xed phoneme-dependent VCO that is interpolated at the frame
boundaries to obtain smooth transitions.
DCT-based pitch modelling For the extraction of the pitch contour
and the phase offsets of the harmonics (see below), we start from the
available pitch labelling information. The pitch contours are usually
very accurate, since they were performed off-line, and sometimes
manually veri ed. In order to further increase its accuracy and to
guarantee smoothness of the pitch contour, we propose the follow-
ing optimisation strategy.

Let s[k] (0 ≤ k ≤ N−1) be a voiced phoneme and L(k) be
the number of harmonics. We now de ne the following constant-
amplitude, DCT-based frequency modulated, sinusoidal representa-
tion :

ŝ[k] =

L̄X
i=0

ai cos

„
2πi

Z k

0

f0[t]dt

«
+

L̄X
i=1

bi sin

„
2πi

Z k

0

f0[t]dt

«

with L̄ = max(L(k)), and with the DCT-based pitch model of order
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Fig. 1. Spectrogram of a short speech utterance, with automatically
annotated VCO contour.

MFM given by

f0[k] =

MFM+1X
j=1

wj fdct,j cos

„
π(2k − 1)(j − 1)

2N

«
(1)

and with wj = 1/
√

N for j = 1 and wj =
p

2/N for 2 ≤ j <
MFM + 1.

We now solve this optimisation problem in LS sense. The prob-
lem is highly non-linear in the pitch parameters fdct,j, but linear in ai

and bi for xed fdct,j. We rst derive good starting points for fdct,j
by taking the DCT expansion of the given pitch contour, and then
re ne this initial pitch estimate in a combined optimisation of ai and
fdct,j using the Levenberg-Marquardt (LM) update rule. See [6] for
an analytical derivation of the solution of this optimisation problem.
The iteration is continued until convergence is reached.
Phase offset The phase offsets φ0,i are simply obtained from the
above optimisation as

φ0,i = tan−1

„
bi

ai

«
for k = 1 . . . L̄

Time-frequency AR modelling The assumption of constant am-
plitudes for the sinusoids within one frame becomes unacceptable
for longer speech segments. In natural speech, each sinusoidal track
has its own amplitude modulation (AM) factor, related to the time-
evolving vocal tract lter.

An explicit DCT-based expansion of the AM of every harmonic
is not feasible due to the high number of parameters involved. It
is therefore common practice in SM to model the spectral enve-
lope by means of auto-regressive (AR) modelling, and to obtain
the harmonic amplitudes by sampling this spectral envelope at the
pitch frequency and its harmonics. Motivated by the observation that
within one phoneme AR parameters tend to change smoothly over
time ( gure 2), we apply Time-Frequency Auto-Regressive mod-
elling (TFAR), which is a generalisation of standard AR modelling
towards time-varying AR modelling. The properties of TFAR with
an FFT-based expansion of the AR parameters have been studied in
[7]. In this work, we use a low-order DCT-based expansion to model
the temporal variations in the AR parameters.

Mathematically, the TFAR problem of order (MAM, K) is ex-
pressed as follows. Find the parameters pm,l that minimise

N−1X
k=0

e2[k]
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Fig. 2. Classical AR model (top) and TFAR model (bottom) for a
realisation of the phoneme /e/. Left : prediction coef cients versus
time. Right : corresponding spectrograms.

subject to

s[k] = −
MAMX
m=1

pm(k)s[k −m] + e[k] (2)

with

pm(k) =
KX

i=1

wi pm,i cos

„
π(2k − 1)(i− 1)

2N

«

As before,wi is given by 1/
√

N (i = 1) or by
p

2/N (2 ≤ i ≤ K).
In the above expressions, we observe both time (s[k −m]) and

frequency (cos(π(2n−1)(i−1)/2N)) shifts of the input signal s[k],
hence the name time-frequency AR.

The orderK is adapted to model the spectral envelope with suf-
cient detail without capturing the modulation due to the source sig-
nal.

The solution of the TFAR problem of order (MAM, K) requires
the estimation ofMAM.K prediction parameters pm,l. Even though
the set of equations in (2) can be solved as a simple linear LS prob-
lem, more re ned ways to solve it exist [7].

The main advantages of a TFAR instead of the classic AR ap-
proach is the reduction in number of model parameters, its intrinsic
capability to model non-stationarity in speech1, and the smoothness
of the amplitude contours (no linear interpolation is needed). These
bene ts come with a signi cantly higher computational load during
analysis, but this is not an issue in the current application. An ex-
ample is given in gure 2, where in the upper panel a standard AR
model of order 18 and small frame shift is compared in the lower
panel to a TFAR of order (18, 5) for a realisation of the phoneme /e/
with 100 ms duration. The parametrisation over time of the TFAR
model seems appropriate to model the time-varying nature of the
signal. Note that the order of the AR model can be made dependent
on the phoneme (higher for vowels, lower for non-nasalised conso-
nants) which further reduces the number of model parameters.
Gain function gh[k] The global gain contour gh[k] is modelled by

1Although not proven, this may lead to a better spectral modelling in tran-
sitional speech segments.

a low-order DCT expansion. The parameters are found by LS tting
of the harmonic part

PL(k)
i=0 âi(k) sin

“
2πi

R k

0
f0[t]dt + φ0,i

”
to the

original signal2. The amplitudes âi are obtained by sampling the
temporal envelope that was modelled with a TFAR model.

Let D be an N × (MAM+1) matrix with the DCT expansion
functions on its columns, and let H be an N × (MAM+1) matrix
with the signal

PL(k)
i=0 âi(k) sin

“
2πi

R k

0
f0[t]dt + φ0,i

”
on every

column. The vector q of coef cients of the DCT expansion of gh[k]
are then found by solving the set of equations (D ∗H)q = s in the
least squares sense, with ∗ denoting the Hadamard (element-wise)
product of two matrices and s the vector containing s[k].
For phonemes with strong temporal dynamics (e.g. plosives or /r/),
the above approximation will not be accurate enough. In this case,
the energy envelope is updated every 2 ms, which is a common pro-
cedure.
Gain function gn[k] The gain of the noise part is obtained as a
low-order DCT expansion of the short-term energy envelope of the
high-pass (cut-off is VCO frequency) version of TFAR residual sig-
nal e[k].

4. HNM SYNTHESIS

We rst describe how the phoneme segments ŝ[k] are resynthesised
from the HNM analysis parameters.
Harmonic part First, the phase envelope φ(k) is obtained by con-
sidering k as a continuous variable and integrating3 (eq. 1) over k.
In a second step, we construct a set of unit-amplitude sinusoids,
sin (iφ(k) + φ0,i), with k = 0 . . . (N−1) and i = 0 . . . max(L(k)).
We then apply an amplitude modulation to each of the sinusoids, de-
rived from the all-pole TFAR lter with lter coef cients pm(k) to
obtain the correct spectral envelope. The summation of these AM
modulated sinusoids is sent through a time-varying linear-phase low-
pass (LP) lter with cut-off frequency L(k)f(k). Finally, this signal
is multiplied sample-by-sample by the gain contour.
Noise part The objective here is to generate arti cial noise with the
correct spectral and temporal characteristics and to properly com-
bine it with the HSM signal.

We rst generate a unit-variance fullband white noise signalw[k],
apply a time-varying linear-phase high-pass (HP) lter with cut-off
frequency L(k)f(k) (only for voiced speech; the LP and HP lters
are matched and sum up to 1, and have a controllable transition zone
to obtain smooth transitions from harmonic to noise spectral bands),
send it through the all-pole TFAR lter, and nally apply the correct
gain contour.
The synthesised phoneme is obtained by a simple summation of the
noise part and the harmonic part.
Phoneme concatenation The synthesised speech sentence is now
obtained by the concatenation of the resynthesised phoneme seg-
ments. Smooth phoneme to phoneme transitions can be obtained
by either using a time-domain technique like WSOLA [8], or - more
interestingly - by using direct parameter interpolation of the HNM
parameters during synthesis. For more details on the latter, see the
pioneering work of Mc. Aulay & Quatieri [9].

5. EVALUATION

Our HNM model was extensively evaluated on a TTS system with a
donor database of a Dutch female voice. From this database, we se-
lected a subset of 150 short speech recordings (10 minutes of speech)

2We can indeed use s[k] and not a low-passed version of it, since the
number of harmonics is low compared to the signal length N .

3Recall that the frequency f(k) is the time derivative of the phase φ(k).
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for simulation and testing, along with their pitch labelling and pho-
netic segmentation. Besides, 36 TTS test sentences were de ned that
are synthesised by concatenation of short segments from the original
donor database.

5.1. Simulations

Quality of the model Simulations indicated that a 4th or 5th or-
der DCT model is capable of accurately representing the amplitude
and frequency variations that are present within one single phoneme.
This was illustrated by the fact that the goodness-of- t of the har-
monic model (measured in terms of the signal-to-noise ratio) re-
mains suf ciently high (mostly between 10 and 15 dB for vowels),
even for long realisations of phonemes (e.g. above 150 ms). As such,
for vowels and voiced consonants without strong dynamics, the num-
ber parameters is (almost) independent on the length of the phoneme
realisation (see below). These ndings con rm that signal variabil-
ities are indeed limited within a phoneme, and that our approach to
model phonemes in their integrity is valuable. Even though the use
of a xed order for the AM and FM will yield accurate results in
most cases, it can be interesting to adapt the value of MFM and K
to the segment characteristics (length, phoneme identity, pitch con-
tour,. . . ). See also [3] for related work.
Numerical stability Even though the objective function is strongly
non-linear with lots of local minima, the Least Squares optimisation
in the FM HSM converges rapidly (3 to 4 iterations are suf cient in
most cases), which proves that the initialisation based on the avail-
able pitch les is very accurate. The reason for the accurate pitch
estimation is that it was performed off-line, which makes it possi-
ble to include a DP approach with a suf ciently large look-ahead to
avoid halving and doubling errors. No examples of divergence were
encountered.
Number of model parameters For vowels and voiced consonants
for which a DCT-based gain contour can be used, we have on av-
erage the following number of model parameters : phoneme length
(1), VCO contour (4), pitch contour (5), phase offsets (10. . . 40)4,
noise gain contour (6), harmonic gain contour (6), and TFAR (90).
This yields a total number of parameters in the range 120 . . . 150.

For unvoiced phonemes we have : phoneme length (1), energy
contour (6 for DCT-based contour or 1 parameter every 2 ms in case
of strong dynamics5), and TFAR (90). This yields a total number
in the range 100 . . . 130. If we use a lower order for the spectral
envelope (e.g. 10), this number can be reduced by 40.

We now make an estimate of the number of parameters per sec-
ond of speech. The average phoneme lengths from the database are
as follows : 74 ms for a vowel, 63 ms for a voiced consonant, 100
ms for an unvoiced consonant, 42 ms for a voiced plosive, 53 ms
for an unvoiced plosive. Based on the relative occurrences of these
phoneme classes, we end up with approximately 15 phonemes per
second of stored speech, from which 1700 to 2150 model parame-
ters per second have to be extracted, and subsequently coded. Given
the excellent coding algorithms that exist for AR parameters, and
the low sensitivity of DCT coef cients to coding errors, we are con-
dent that it will be possible to obtain natural speech quality at low
bit rates based on our DCT-based harmonic-plus-noise model.

5.2. Listening experiments

Extensive listening tests were performed in which ten subjects (the
authors included) participated.
Resynthesis of donor les In these experiments, we applied HNM
analysis-resynthesis to the speech les from the donor database. Lis-
tening tests revealed that the synthesised speech is of very high qual-
ity and almost indistinguishable from natural speech.

4This number is dependent on the voicing and on the pitch.
5based on an average length of 50 ms for this kind of phonemes

TTS synthesis In this experiment, we used WSOLA-based con-
catenation for the concatenation of phonemes after HNM analysis-
resynthesis. In this way, 36 different TTS sentences were produced.
Listening tests have shown that the TTS sentences are of good qual-
ity. The artefacts - e.g. discontinuities in prosody - are mainly due to
the compromises that have to be made in the TTS segment selection,
and they are inherent to the corpus-based TTS paradigm.

We are currently replacing the WSOLA-concatenation by an
interpolation-based synthesis and concatenation. We believe that this
will lead to smoother transitions at the segment boundaries and to an
increase in the perceptual quality of the synthesised speech.

6. CONCLUSIONS

We have shown that phonetic segmentation and annotation infor-
mation from a TTS system can be successfully exploited to model
speech phonemes in their integrity with a harmonic-plus-noise model
that incorporates a DCT-based expansion of the pitch and ampli-
tude contours. Listening tests have shown that synthesised speech is
very natural, despite the limited number of parameters in the speech
model. The good coding properties of our HNM parameters make
it feasible to develop a (very) low bit rate coder, which is especially
useful for embedded applications in TTS. In our future work, we
will investigate coding strategies and the possibilities of this repre-
sentation for time and pitch scaling during synthesis, since this could
reduce the number of speech segments that are needed in the donor
database of the TTS system.
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