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ABSTRACT
We propose to use Minimum Divergence, where acoustic sim-

ilarity between HMMs is characterized by Kullback-Leibler

divergence, for discriminative training. The MD objective

function is defined as a posterior weighted divergence mea-

sured over the whole training set. Different from our earlier

work, where KLD-based acoustic similarity is pre-computed

for all initial models and stays invariant in the optimization

procedure, here we propose to jointly optimize the whole vari-

able MD by adjusting HMM parameters since MD is a func-

tion of the adjusted HMM parameters. An EBW optimization

method is derived to minimize the whole MD objective func-

tion. The new MD formulation is evaluated on the TIDIG-

ITS and Switchboard databases. Experimental results show

that the new MD yields relative word error rate reductions

of 62.1% on TIDIGITS and 8.8% on Switchboard databases

when compared with the best ML-trained systems. It is also

shown the new MD consistently outperforms other discrimi-

native training criteria, such as MPE.

Index Terms— discriminative training

1. INTRODUCTION

In the past decade, Discriminative Training (DT) has been

shown to be effective in reducing word error rates of Hidden

Markov Model (HMM) based Automatic Speech Recogni-

tion (ASR) systems. Some widely-used discriminative train-

ing criteria, including Maximum Mutual Information (MMI)

[1, 2, 3] and Minimum Classification Error (MCE) [4], which

define errors at sentence level, have been shown to be quite

effective on small-vocabulary tasks [2, 4]. Recently, new cri-

teria such as Minimum Word Error (MWE) [5] and Mini-

mum Phone Error (MPE) [5], which focus on tuning errors

at lower levels, have been proposed to improve recognition

performance on Large Vocabulary Continuous Speech Recog-

nition (LVCSR) tasks, e.g. Switchboard [5].

Because we are refining acoustic models by DT, it is rea-

sonable to define error with high resolution, which has been

1The work has been done when Jun Du was visiting at Microsoft Research

Asia

proved by the success in MPE [5]. In [6], we proposed a

novel approach which defines error based upon the Kullback-

Leibler divergence (KLD) between the underlying HMMs [8]

directly. The corresponding criterion, Minimum Divergence

(MD), possesses the following advantages: 1. It is with higher

resolution than any label comparison based error definition.

2. It is a general solution in dealing with any kinds of mod-

els and phone sets. As a result, MD outperforms other DT

criteria on several tasks [6], and achieves better robustness in

noisy conditions [7]. It is notable that in MD, the accuracy

term is a function of model parameters. Hence, we can also

take it into consideration in the optimization process. In this

paper, we propose a integrated algorithm to update the both

the posterior and the accuracy. By approximating KLD be-

tween two Gaussian mixture models (GMMs) using the KLD

between the two dominating Gaussian kernels, we come up

with a concrete Extended Baulm-Welch (EBW) algorithm for

MD updating. The algorithm is more reasonable and efficient

than that in [6], which calculates all the KLDs in advance

before training. By using the algorithm, MD criterion turns

out to be more concise than label comparison based criteria:

1. The accuracy, which is related with the model parameter,

can also be updated; 2. No dynamic programming or other

heuristic alternative is required in assessing errors. As a re-

sult, experimental results on TIDIGITS and Switchboard full-

set show that MD yields further error rate reduction compared

with MLE and MPE.

2. OBJECTIVE FUNCTION OF MINIMUM
DIVERGENCE

From the unified viewpoint of minimum error training, the

objective function can be represented as an average of the

transcription accuracies of all hypotheses weighted by their

posterior probabilities. For conciseness, we consider the case

where there is only one training token in the formulation. In

such case, criteria of minimum error training can be repre-

sented as:

F(λ) =
∑

W∈M
Pλ(W | O)A(W ,Wr) (1)
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where λ represents the set of the model parameters; Wr is the

reference word sequence; M is the hypotheses space or the

word graph; Pλ(W | O) is the posterior probability of the

hypothesis W given O.

In Eq. (1), A(W ,Wr) is the accuracy measure of W
given its reference Wr. In MWE/MPE, it is the Levinstein

distance at word/phone level between hypothesis and refer-

ence. We can argue this point by advocating the final goal of

discriminative training. In refining acoustic models to obtain

better performance, it makes more sense to define errors in a

more and more granular form of acoustic similarity. Hence,

we propose to use acoustic similarity as an ultimate soft error

measure. The acoustic similarity can be quantitively mea-

sured based on the KLD between underlying HMMs. Corre-

spondingly, the MD criterion is defined as:

FMD(λ) = −
∑

W∈M
Pλ(W |O)Dλ(Wr ‖ W ) (2)

where Dλ(Wr ‖ W ) is the KLD between Wr and W . By

adopting the MD criterion, we can refine acoustic models

more directly by measuring discriminative information be-

tween a reference and other hypotheses in a more precise way.

The criterion has the following advantages when compared

with label comparison based error definitions: 1) It measures

acoustic similarity between two underlying models, which

leads to high resolution error analysis. 2) In MWE/MPE train-

ing, we need to calculate the accuracy between the reference

and hypothesis sequences. The exact implementation is com-

putationally expensive, which is avoided here. 3) Label com-

parison is no longer used, which alleviates the influence caused

by language model and phone set. 4) Dλ(Wr ‖ W ) is di-

rectly related to model parameters λ, so it can be jointly opti-

mized in the MD training.

3. JOINT OPTIMIZATION FOR MD

In this section, we derive an Extended Baulm-Welch (EBW)

algorithm to minimize the whole MD objective function jointly

based on word graphs. A major different from the original

EBW algorithm for MPE is that now the accuracy term is also

considered in optimization.

3.1. Weak-sense auxiliary function

To use the framework of EBW, we first introduce the follow-

ing weak-sense auxiliary function:

H(λ, λ′)=
L∑

w=1

[gλ′(w) log pλ(O | w)−hλ′(w)aλ(w)] (3)

where w represents a word arc in a word graph with L word

arcs; pλ(O | w) is the likelihood of w; aλ(w) is KLD be-

tween w and the corresponding time segments in reference.

gλ′(w) and hλ′(w) are defined as:

gλ′(w) =
∑

W∈M
−∂Pλ(W |O)
∂ log pλ(O|w)Dλ(Wr ‖ W )

∣∣∣
λ=λ′

hλ′(w) =
∑

W∈M Pλ(W | O)∂Dλ(Wr‖W )
∂aλ(w)

∣∣∣
λ=λ′

(4)

Actually, g is the counterpart of occupation probability which

is the same as that in our original formulation [6], and h is

newly introduced by accuracy updating. If Dλ(Wr ‖ W ) is

regarded as a constant in optimization, h does not arise. It

is easy to prove that H(λ, λ′) satisfies the conditions of the

weak-sense auxiliary function in [5]:

∂H(λ, λ′)/∂λ|λ=λ′ = ∂FMD(λ)/∂λ|λ=λ′

Note that in h, posterior is used to weight derivatives on

the model KLDs, h is actually dispersing the models of all the

hypotheses. That means the relative moving directions of all

the models are reasonable based upon the general goal of dis-

criminative training, However, note that hλ′(w) > 0, which

means the general trend is the minimizing the divergence be-

tween a hypothesis and the reference, and it is somewhat un-

reasonable. In this paper, we only investigate the issue of rel-

atively dispersing the hypotheses, and leave the unreasonable

part to be solved in our future research.

3.2. g and h

From the definition of g and h, we can easily obtain:

hλ(w) =
∑

W∈M:w∈W

Pλ(W | O)

gλ(w) = κ hλ(w)
[
dλ(w) − davg

λ

]
(5)

where:

davg
λ = −

∑
W∈M

Pλ(W | O)Dλ(Wr ‖ W )

dλ(w)=−
∑

W∈M:w∈W Pλ(W |O)Dλ(Wr ‖ W )∑
W∈M:w∈W Pλ(W |O)

The physical meaning of hλ(w) is the occupancy of the arc

w, and dλ(w) is the average similarity of hypotheses passing

through the arc w in the word graph. davg
λ is the average sim-

ilarity of all hypotheses in the word graph. All these values

can be calculated by Forward-Backward algorithm [6] in the

word graph.

3.3. aλ(w)

With state frame-independent assumption in HMMs, the cal-

culation of aλ(w) can be decomposed down to the state level

[6, 9]. Thus we obtain:

aλ(w) =
ew∑

t=bw

D(st
r ‖ st

w) (6)
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where bw and ew represent the start and end frame of w, re-

spectively. st
w and st

r represent a certain state at time t in arc

w and the reference, respectively. Hence, D(st
r ‖ st

w) is the

KLD between two output distributions of st
w and st

r.

In [6], we adopt unscented transform [10] to approximate

KLD of two GMMs, which has been proved quite effective.

However, the approach is still too expensive to be conducted

online. In this paper, to update accuracy in the training pro-

cess, we adopt an alternative approach: first, given the obser-

vation, the dominant kernel with maximum posterior proba-

bility is selected for st
r and st

w. Then state-level KLD can

be approximated using kernel-level KLD with the following

closed-form solution:

Dλ(st
r ‖ st

w) ≈ Dλ(ltr ‖ ltw) =
1
2

[
log

|Σltw
|

|Σltr
| − N +

Trace(Σ−1
ltw

Σltr
) + (μltr

− μltw
)�Σ−1

ltw
(μltr

− μltw
)
]

(7)

where N is the dimension of parameter vectors; μ and Σ are

mean and covariance, respectively; l denotes the dominant

kernel.

3.4. Statistics for EBW

Now we can come up with the statistics for EBW updating.

Based upon the derivations above, we obtain:

∂H(λ, λ′)
∂λsl

=
L∑

w=1

ew∑
t=bw[

gλ′(w)
∂ log pλ(ot |st

w)
∂λsl

− hλ′(w)
∂Dλ(st

r ‖ st
w)

∂λsl

]
(8)

where λsl denotes mean or covariance for the lth kernel in the

sth state.

The solution of the first partial derivative in Eq. (8) is the

same as that of MPE [5]. Based on Eq. ( 7), the second partial

derivative in Eq. (8) can be derived as:

∂Dλ(st
r ‖ st

w)
∂μsl

= δ(st
r �= st

w)δ(sl = st
wltw)Σ−1

sl (μsl − μltr
)

∂Dλ(st
r ‖ st

w)
∂Σsl

=
1
2
δ(st

r �= st
w)δ(sl = st

wltw)Σ−1
sl

[
I

−(μsl − μltr
)(μsl − μltr

)�Σ−1
sl − Σltr

Σ−1
sl

]
(9)

where ltr and ltw are the dominant kernels of st
r and st

w, respec-

tively.

By setting ∂H(λ, λ′)/∂λsl = 0 and solving it, The final

statistics are gathered as follows:

θnum
sl (X)=

L∑
w=1

ew∑
t=bw

[max(gλ′(w), 0)γslt(X)+hλ′(w)γ∗
slt(X)]

θden
sl (X) =

L∑
w=1

ew∑
t=bw

max(−gλ′(w), 0)γslt(X)

where X = 1,O,O2. γslt are the kernel statistics [5] related

with the first partial derivative in Eq. (8). γ∗
slt related with the

second partial derivative in Eq. (8) are defined as:

γ∗
slt(1) = δ(st

r �= st
w)δ(sl = st

wltw)
γ∗

slt(O) = γ∗
slt(1)μltr

γ∗
slt(O

2) = γ∗
slt(1)(μltr

μ�
ltr

+ Σltr
) (10)

Based on the above statistics from word graphs, we adopt

EBW algorithm to update HMM parameters as follows [5]:

μsl =
θnum

sl (O) − θden
sl (O) + Dslμ

′
sl

θnum
sl (1) − θden

sl (1) + Dsl

Σsl=
θnum

sl (O2) − θden
sl (O2) + Dsl(Σ′

sl + μ′
slμ

′�
sl )

θnum
sl (1) − θden

sl (1) + Dsl
−μslμ

�
sl

where Dsl [5] is the kernel-dependent smoothing factor to en-

sure that the objective function is concave.

4. EXPERIMENTS

In our earlier work [6], all KLD-based acoustic similarities

are pre-computed in a state-level KLD matrix based on ini-

tial models and treated as constants during the MD optimiza-

tion. For a typical system with thousands of tied states, it’s

computationally expensive. In the following experiments of

this paper, we calculate the kernel-level KLD online by using

Eq. (7). With kernel-level KLD, there are two advantages:

1) The KLD-based acoustic similarities actually related with

HMM parameters are updated in MD optimization. 2) It al-

most needs no extra computation in advance.

4.1. Connected digits experiments

We first conduct connected digit string recognition experi-

ments on the TIDIGITS database[11]. The corpus vocabu-

lary is made of the digits ’one’ to ’nine’, plus ’oh’ and ’zero’.

All four categories of speakers, i.e., men, women, boys and

girls, are used for both training and testing. The models are

training using 39-dimensional MFCC features. All digits are

modeled using 10-state, left-to-right whole word HMMs with

6 Gaussians per state. Because of whole word models, MPE

is equivalent to MWE in this case. The acoustic scaling factor

κ was set to 1
33 and I-smoothing is not used on TIDIGITS.

The smoothing constant E [5] was set to 2.

In figure 1, performances comparison are given on the

TIDIGITS test set. ‘MD1’ denotes that the second partial

derivative in Eq. (8) is not considered in MD formulation.

’MD2’ denotes the method to optimize the whole MD ob-

jective function jointly. It is clear that MD significantly im-

proves model accuracy compared with MPE training. The

best result achieved by ‘MD1’ gives word error rate of 0.44%,

which yields relative improvement of 62.1% and 30.2% over

the ML and MPE models, respectively. Also we can observe
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Fig. 1. Performance comparison on TIDIGITS test set

that ‘MD2’ achieves comparable performance with ‘MD1’.

It’s reasonable because we found that the statistics defined in

Eq. (10) for the second partial derivative only give a marginal

benefit on the whole statistics.

4.2. LVCSR experiments

For the Switchboard task, the models are trained on the 265

hour training sets using the 39-dimensional Perceptual Lin-

ear Prediction (PLP) features with MVN (Mean and Variance

Normalization) processing. Each tri-phone is modeled by a 3-

state HMM. Totally, there are 6000 tied states with 16 Gaus-

sians per state. The test set is eval2000. Uni-gram LM is

used to generate hypotheses word graphs. Tri-gram language

model is used for testing. The acoustic scaling factor κ is set

to 1
15 . We use the NIST scoring software [12] to calculate

all speech recognition results. The smoothing constant E [5]

was set to 2. For MPE and MD training, I-smoothing factor τ
was set to 100, and joint optimization is adopted in the latter.

I-smoothing was not used for MMI because there is almost no

impact to performance.

As shown in table 1, MD achieves a word error rate of

28.9%, which yields 8.8% relative improvement over the base-

line. The performance is also better than MMI and MPE.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we propose to adjust HMM parameters so as to

jointly optimize the whole criterion of Minimum Divergence

(MD), where the accuracy term is based on model similar-

ity and is a function of parameters now. By adopting kernel-

level KLD, we obtain a closed-form EBW algorithm, which

is general and more efficient than our previous solution [6].

The effectiveness of the approach is verified by experimental

results, which shows that it is promising to define error and

refine it based on model similarity.

As our major future work, we plan to solve the model

moving direction problem mentioned in 3.1, and thus to ef-

fectively show the benefit of adjusting KLDs in optimization.

Table 1. WER (%) of different criteria on Switchboard test

set
Criterion ML MMI MPE MD

WER(iter) 31.7 29.6(6) 29.1(8) 28.9(8)

Rel.Impr. N/A 6.6% 8.2% 8.8%
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