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ABSTRACT 
 
In this paper, we propose a new framework for pronunciation 
modeling, in which the search algorithm tries to focus primarily on 
the clearly-pronounced portion of speech, while deemphasizing the 
observations of the slurred portion. This is based on the prior 
analysis that the pronunciation variation has to do with the 
predictability and the importance of the words in the spoken 
utterances, which may be estimated to some extent. We define a 
set of pronunciation-related features and develop a Latent 
Pronunciation Analysis (LPA) to estimate the “latent 
pronunciation states” in the speech. The LPA probabilities, 
pronunciation-related features and another set of prior knowledge 
obtained from two distance measures between phonemes are 
integrated in a SVM classifier to produce a “pronunciation 
variation indicator” for each frame, based on which the Viterbi 
decoding was performed. Very encouraging initial results on 
Mandarin spontaneous speech were obtained in preliminary 
experiments. 
 

Index Terms— Pronunciation variation, spontaneous speech, 
speech recognition, Probabilistic Latent Semantic Analysis, 
Distance metrics. 
 

1. INTRODUCTION 
 
The pronunciation variation present in spontaneous speech is one 
of the major problems in spontaneous speech recognition. Various 
techniques have been proposed to deal with this problem. 
Articulatory features have been used for feature-based 
pronunciation modeling [1]. Feature spaces covering longer time 
segments were also used to implicitly model pronunciation 
variation due to coarticulation [2]. Another family of popular 
approaches employed multiple-pronunciation dictionaries which 
include pronunciation variants in addition to the canonical 
pronunciation of words to capture the pronunciation variation [3,4]. 
However, the added variants also introduce extra lexical confusion 
because of the increase in words sharing identical or similar 
pronunciations [3,4]. Another group of methods use “automatically 
derived units” to make the acoustic model optimized with respect 
to pronunciation variants. Ergodic hidden Markov models (EHMM) 
for such sub-word units were also developed as probabilistic 
pronunciation networks for lexical words [5]. Still other 
approaches tried to integrate models of acoustic units from non-
native speakers [6], or adapted the acoustic models based on 
pronunciation variability analysis [7]. 

In this paper, we develop a new framework for handling the 
pronunciation variation for large vocabulary spontaneous speech 
recognition, where the pronunciation variation considered is 
mainly from the intra-speaker variability. This is based on the prior 
analysis that the pronunciation variation very often has to do with 
the predictability and the importance of the words in the spoken 
utterances, in addition to many other factors. We try to model the 
pronunciation by a set of pronunciation-related features, a set of 
“latent pronunciation states”, and the prior knowledge constructed 
from two distance measures between phonemes estimated from a 
training corpus. These are all used in a Support Vector Machine 
(SVM) to obtain a “pronunciation variation indicator” for each 
frame of the speech signal. This indicator can then be applied in a 
modified search algorithm which de-emphasizes the frames of 
slurred phonemes but focuses more on those of clearly-produced 
phonemes. Very encouraging initial results are reported. 

Below in Section 2, we present the framework of the 
proposed approach, while in Section 3, we describe the initial 
experimental results. The concluding remarks are finally made in 
Section 4. 
 

2. PROPOSED APPROACH 
 
2.1. Basic principle and the overall picture 
 
Prior analysis indicated that speakers automatically adjust their 
articulatory efforts to accommodate the listener considering the 
predictability and the importance of the information carried by the 
spoken words [8]. The novelty of information for each spoken 
word varies, and phonemes are naturally hyper-articulated during 
points of emphasis and reduced at very predictable instants [9]. 
Other factors such as POS also lead to the varied articulatory 
efforts. However, despite all these pronunciation variation, the 
intelligibility of speech is seldom degraded for human listeners. 
This is why in this paper we propose to design the speech 
recognizer matching the above speech production process by 
focusing more on the clearly-pronounced frames while 
deemphasizing the error-prone parts of speech, instead of decoding 
them uniformly. The negative impact from pronunciation variation 
may thus be avoided while the lost information can be recovered 
based on the information in the more clearly-produced parts as 
well as other context information, such as those modeled by n-
gram probabilities. 

The proposed approach is shown in Figure 1. In the training 
phase, the first-pass recognition produces word graphs for each 
training utterance, from which a whole set of features can be 
extracted. Some of the features are used in the Latent 
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Pronunciation Analysis (LPA) to be presented below in section 2.3. 
Another set of prior knowledge can be directly constructed from 
the training corpora as discussed in section 2.4. All this 
information is used in the SVM classifier training. In the testing 
phase, the first-pass recognition is also performed to produce word 
graphs, from which the various features are extracted and the 
Latent Pronunciation Analysis (LPA) is performed. The SVM 
classification then produces a “pronunciation variation indicator” 
u(t) for each frame of speech, which has to do with the reliability 
of the pronunciation of the frame, to be used in the weighted 
Viterbi decoding. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Overview of the proposed framework for pronunciation 
modeling 
 
2.2. Feature extraction 
 
2.2.1. Basic features extracted from word graph 
The change from a baseform pronunciation into a surface form, 
together with the hypothesized history propagating along the 
search space, may lead the recognition process to generate 
different word hypotheses with different probability scores in the 
word graph. We thus try to extract a whole set of new 
pronunciation-related features from the word graphs produced by 
the first pass recognition of utterances.  
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Basic features extracted from the word graph 
 

For a given word graph, we can first estimate the confidence 
measure for each word arc in the graph using the forward-
backward algorithm. Similarly applying the algorithm for the 
phone lattice expanded from each word arc, confidence measure 
for each phone can be obtained. Part-of-speech tagging is also 
applied throughout the word graph. As shown in Figure 2, for a 
frame i all the word arcs including the frame, [ar(1), … ar(n) …], 
are the associated word arcs, and a whole set of basic features can 

thus be obtained for frame i from these arcs, such as the current 
word w(n) for ar(n), confidence measure cm(n) for ar(n), n-gram 
probabilities lm(n) for ar(n), etc. 
 
2.2.2. Word predictability features 
As mentioned previously, pronunciation variation has to do with 
the predictability of the words. A set of features considering word 
predictability are thus defined for each frame. One example is the 
average language model score Lm over all associated word arcs, 
ar(n), weighted by their respective word confidence measures 
cm(n), 

( ) ( ).
n

Lm cm n lm n     (1) 

Another example is the average conditional entropy Ent over all 
associated word arcs, also weighted by the word confidence 
measures: 

( ) ( ),
n

Ent cm n ent n     (2) 

where ent(n) is the normalized conditional entropy for the possible 
word spoken at this frame, vi ,given the previous word pw(n) of 
this arc, i.e.  

( ) { ( | ( )) log ( | ( ))}/ log | |i i
i

ent n p v pw n p v pw n V  (3) 

where V={ vi } is the set of all possible words spoken at the 
current frame, which can be defined in different ways. Another 
example is the averaged entropy similarly evaluated based on the 
confidence measures of the associated word arcs.  
 
2.2.3. Phone level features 
A whole set of phone level features can also be obtained. For 
example, a set of Gaussian mixtures with large enough weights 
from the acoustic models can be first collected. The Gaussian 
likelihoods for the current frame can be evaluated with no priors, 
and the entropy evaluated based on the posteriors can then be used 
to measure the confusion among acoustic units. This can be further 
expanded to adjacent frames on the left and right, and so on. The 
phone level confidence measure as mentioned in (2.2.1) can be 
another example. The entropy evaluated based on them may also 
indicate the degree of confusion. 
 
2.3. Latent pronunciation analysis (LPA) 
 
There can be many unknown factors behind the phenomena of 
pronunciation variation, referred to as “latent pronunciation states” 
here in this paper, for example the slurred phones for less 
important function words. But these latent states may be important 
in modeling the pronunciation. We thus propose here to analyze 
the “latent pronunciation states” from the observable word graph 
structure using the Probabilistic Latent Semantic Analysis (PLSA) 
framework useful in the area of information retrieval [10]. In 
PLSA, instead of directly counting the co-occurrence statistics 
between the document set { }id  and the term set { }kt , a set of 
latent topics { }lz  is created and the relationships between each 

document id  and each term kt are modeled by a probabilistic 

framework via these latent topics { }lz : 

( | ) ( | ) ( | ), , ,k i k l l i
l

P t d P t z P z d i k         (4) 
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where the probabilities were trained with an EM algorithms by 
maximizing the total likelihood function: 

( , ) log ( | ),T k i k i
i k

L n t d P t d    (5) 

and ( , )k in t d denotes the frequency count of kt  in id . 
In the Latent Pronunciation Analysis (LPA) developed here, 

we treat the set of word arcs associated with each frame i, 
[ar(1), …ar(n), …] as shown in Figure 2, as the “pronunciation 
documents”, di , and each individual word arc, ar(n), including the 
identities of the previous word, the current word, the current phone 
and the HMM state for the arc at the frame as the “pronunciation 
term” tk in the document di , while the latent topic zl corresponds to 
the latent pronunciation state, as illustrated in Figure 3. All the 
probabilities in equation (4) can be trained with EM algorithm as 
in PLSA, with the frequency count n(tk, di) in equation (5) taken as 
the confidence measure for phone identity ph(p) of tk in di . This is 
the LPA proposed here in this paper. With such a model, the 
probabilities of each frame di belonging to a pronunciation state zl, 
p(zl | di ), can be taken as extra features to be used below. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. Latent Pronunciation Analysis (LPA) 
 
2.4. Prior knowledge construction 
 
A phoneme p may be recognized as another phoneme q because 
they are acoustically similar to each other, or because the speaker 
actually produced p as q due to the pronunciation variation. The 
phenomena may be even more complicated since the two 
situations may happen simultaneously. Both of these situations can 
be analyzed in advance from a training corpus, and such prior 
knowledge can be useful in pronunciation variation modeling. 
Here this is done based on two statistical metrics, acoustic distance 
and phonemic distance between each pair of phonemes [4]. 

The acoustic distance dac(r;q) measures how likely it is that a 
phoneme q may be recognized as another phoneme r, and can be 
evaluated by, for example, the Kullback Leibler distance between 
two HMMs. This distance gives the possible degree of confusion 
between two phonemes. On the other hand, the phonemic distance 
describes how likely it is that a phoneme p (base form) is realized 
as another phoneme q (surface form), 

dph(q;p)= -ln[ Pr( Ts=q | Tc=p ) ]    (6) 
where Ts and Tc are aligned surface and canonical transcriptions 
respectively. Both of these two distances are asymmetric and can 
be used to construct confusion matrices to be used here [4]. For 
example, for a recognized (or produced) phoneme r (or q), the 
distances dac(r;q) and dph(q;p) for all phonemes q r (or p q ) 

can be used to evaluate entropy measures to be used in the 
approach here. 

In addition, since the phonemic distance describes the 
relationship from the target phoneme p to the produced phoneme q, 
while the acoustic distance describes the relationship from the 
produced phoneme q to the recognized phoneme r, the two phases 
of speech production and recognition can be considered as 
cascaded as in Figure 4. For a speech frame recognized as a 
phoneme r, it may be actually produced as different phonemes q’s, 
which in turn may be the surface forms of some other target 
phonemes p’s. Each path in Figure 4 can thus be assigned a 
probability based on dph and dac. For a given phoneme r the 
probabilities for all paths leading to r with p=q and p q  can be 
used to measure the probability of pronunciation variation given r.   
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. The cascade of speech production and recognition 
processes for the two distance measures. 
 
2.5. SVM classifier training 
 
All the features, LPA probabilities and prior knowledge presented 
above can be used to train the support vector machine (SVM) with 
a radial basis kernel. For each frame in the training set, whether the 
speaker actually produced the target baseform or the varied surface 
form (a binary decision) should be determined first. A previously 
developed automatic surface form generation procedure [4] was 
used here, in which phone-level forced recognition was performed 
on the training data based on the phone level confusion table 
obtained in the previous stage of free-phone recognition, phone 
alignment and error pruning. The SVM classifier training was then 
performed with the LIBSVM toolkit [11]. The SVM classifier then 
produced a “pronunciation variation indicator” u(t) (a real number 
between 0 and 1) for each test frame at time t. 
 
2.6. Weighted Viterbi decoding 
 
In the Viterbi decoding in testing, a modified observation 
probability, ' ( )j tb o , for the feature vector ot at time t in HMM state 

j can be used, 
' ( )( ) ( )u t
j t j tb o b o      (7) 

where ( )j tb o  is the original observation probability for the HMM. 

Here u(t) is between 0 and 1, because parts of the surface form 
may still carry some helpful information and should not be 
completely ignored.  
 

3. EXPERIMENTAL RESULTS 
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The corpus used in this research was taken from the Mandarin 
Conversational Dialogue Corpus (MCDC) [12], collected from 
2000 to 2001 by the Institute of Linguistics of Academia Sinica in 
Taipei, Taiwan. 8 dialogues out of the 30, with a total length of 8 
hrs, produced by nine female and seven male speakers, were used 
in this research. 7.1 hours of the corpus were used in training, and 
the rest for testing. The test set was chosen to cover all the 
speakers. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 1. The performance of pronunciation variation classification 
and the character accuracy obtained in the speech recognition 
experiments. 
 
3.1. Pronunciation variation classification 
 
We first evaluate the performance of the pronunciation variation 
classification performed by the SVM classifier, which classifies 
each testing frame as either in baseform (u(t)>0.5) or in surface 
form (u(t) < 0.5 ). The results of recall and precision rates in the 
first two columns of Table 1 are based on the surface forms 
obtained by the previously developed surface form generation 
procedure mentioned in section 2.5 based on known transcriptions. 
The word predictability features alone produced recall and 
precision rates of 65.1 and 69.3 respectively. Adding the POS tags, 
phone level features, LPA probabilities and the prior knowledge 
improve the performance step by step, up to 69.2 and 72.3. 

Further analysis was performed regarding the relative 
importance of the different features used (only the word 
predictability, POS, and phone level features were considered), 
and the five most important features were identified and listed in 
Table 2. 
 
3.2. Large vocabulary spontaneous speech recognition 
 
The baseline recognition system uses a canonical lexicon of 50K 
entries, a trigram language model, and an intra-syllable right 
context dependent Initial/Final acoustic model set (a Mandarin 
syllable is decomposed into two parts: Initial and Final). An 
“oracle” experiment is also performed, in which the surface forms 
obtained based on known transcriptions, as is used in the 
recall/precision evaluation, is used in the weighted Viterbi 
decoding with hard valued weight (1 for baseform and 0.2 for 
surface forms). Table 1 shows that in the last row of the last 
column the character accuracy on the test set improves from 
47.40% for the baseline to 58.99% for the “oracle” case. This 
certainly verifies the high potential of the concept proposed here, 
i.e., relying primarily on the clearly-produced parts but 
deemphasizing the slurred parts of speech is very helpful. The 

actual recognition accuracy in the last column of Table 1 also 
improves step by step when more information is used, although the 
improvements achieved here seem to be relatively limited in the 
initial experiments, probably due to the relatively low 
recall/precision in Table 1. The distance from the “oracle” result 
may indicate the results here are still quite preliminary. 
 
 
 
 
 
 
 
 
 
 
 
Table 2. List of the five most important features among the set 
described in section 2.2. 
 

4. CONCLUSION 
 
A new framework for pronunciation modeling is presented. The 
“latent pronunciation state”, prior knowledge and a whole set of 
features were used to calculate a “pronunciation variation 
indicator” for each frame to be used in weighted Viterbi decoding. 
Significant improvement in recognition accuracy can be achieved 
if perfect information about the state of pronunciation variation is 
available, while moderate improvements in actual recognition 
accuracy were obtained in initial experiments. 
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