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ABSTRACT
Previously we showed that band-pass ltered MFCC-like fea-
tures are useful for noise robust speech discrimination and
recognition. In this paper we aim to improve the previously
presented features by incorporating varying time constants
and gain adaptation in each frequency channel. We show that
varying the time constants leads to a representation that is less
prone to the effects of noise. Further, we show that gain adap-
tation can not only provide better performance in clean con-
dition but can also be used to improve the noise robustness
of the features. These improvements come at a very small
increase in computational cost. Speech discrimination and
recognition results are presented.

Index Terms— Noise robust, speech processing, adaptive
gain, varying time constants.

1. INTRODUCTION

Mel-frequency cepstral coef cients (MFCCs), although very
useful for speech and audio processing in clean conditions,
are not very robust to noise. We take a brief look at some pos-
sible reasons of this behavior. In most audio feature extraction
processes the number of samples used to represent each frame
is small compared to the original sampled waveform. Given
that there will be loss of information in building a compact
representation of the audio signal, the key to generating better
representations is to discard information that is least signi -
cant. In case of MFCCs, the FFT followed by grouping into
critical bands using triangular lters lead to discarding of in-
formation that is not easily quanti able. The temporal infor-
mation in the signal is distributed in the magnitude and phase
of the multiple frequency bins and combining them could lead
to the masking of pertinent information.
The MFCC front-end, due to its dependence on block pro-

cessing and combination of frequency bins, gives a represen-
tation that has low time and frequency resolution. In the hu-
man auditory system the asymmetrical shape of the cochlear
lters allow for good time resolution (due to its gradual roll-
off on the low frequency side) and good frequency resolution
(due to the sharp cutoff on the high frequency side) [1]. But

even without the asymmetrical shape, band-pass ltering is
desirable since it avoids the windowing effects due to block
processing and provides better temporal resolution compared
to the short-time Fourier transform (wherein temporal resolu-
tion is restricted by the size of the analysis window and frame
rate). Also, the use of triangular lters for critical band l-
tering leads to large changes in gain for small changes in the
frequency [2]. Thus the energy estimation in each channel
is smoother if frequency decomposition is performed using
exponentially spaced band-pass lters and the signal strength
in each channel is estimated using an envelope detector (im-
plemented using a recti er and a low-pass lter). Low-pass
ltering before downsampling ensures that there is no tempo-
ral aliasing. The low-pass lter does not discard perceptually
relevent information since we know that the central auditory
neurons cannot respond to very fast temporal modulations [3].
The fast temporal variations that are smoothed out are most
likely perceptually insigni cant. Further, envelope extraction
following band-pass ltering allows us the opportunity to l-
ter out the noise modulations in each channel to some extent.
Noise robust auditory features (NRAF) [4], which are

based on a model of the human auditory system [3], introduce
improvements to MFCC that address the above mentioned is-
sues without adding signi cant computational costs [4]. In
this paper we propose further modi cations to the feature ex-
traction process that make it more robust for speech process-
ing. It is shown that varying the time constants in each chan-
nel and adaptive gain compression of the envelope in each
channel lead to improved noise robustness. The new feature
extraction process is shown in Fig. 1. The use of a half wave
recti er (HWR) for envelope detection has a physiological
grounding (see [3]) but it also justi ed from a signal process-
ing perspective since the use of a HWR avoids pitch doubling
in lower frequency channels [1].

2. EXPERIMENTAL SETUP

The improvements afforded by the modi cations are evalu-
ated for a speech versus non-speech classi cation task at vari-
ous signal-to-noise ratios (SNRs) and a connected digit recog-
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Fig. 1. Block diagram showing the feature extraction process. Band-pass
ltering is followed by spatial derivative, an envelope detector (implemented
as a half-wave recti er and low-pass lter), an automatic gain control stage
and a decorrelation transform.

nition task. Mel-frequency cepstral coef cients (MFCCs) are
used as the baseline. For the speech versus non-speech clas-
si cation, each audio segment was divided into frames of
length 25.625 msec with a frame rate of 100 Hz. Twelve
MFCC’s were extracted from each frame. Thirteen linearly
spaced and twenty-seven log spaced triangular lters were
used to group the FFT bins. The lowest frequency was 133.33
Hz, the linear spacing was 66.66 Hz and the log spacing
was 1.07. In extracting the features we followed the Sphinx
III speci cations [5]. For the NRAF features, forty fourth-
order band-pass lters (spanning the same frequency range
as MFCCs) were used. The BPFs are approximately one-
seventh octave, constantQ lters. The lters had to be chosen
to be approximately one-seventh octave to match the num-
ber of triangular lters used for the standard MFCC features.
The rst thirteen coef cients (of the DCT) were used to per-
form the classi cation. A Gaussian mixture model (GMM)
based classi er was used to predict the log-likelihood of each
frame belonging to a particular class. The log-likelihoods of
all frames in a segment belonging to each class were added
to make the nal decision. Post-processing consisted of mean
subtracting and variance normalizing the features from each
one second segment [6].

For the speech recognition task, MFCCs were extracted
using the HTK toolkit front-end [7], 23 channels were used.
Thirteen MFCC coef cients (including the zeroth coef -
cient) were mean and variance normalized (MVN) [6] and
delta and acceleration features were computed to form a 39-
dimensional feature vector. The NRAF features were also ex-
tracted in a similar way. Thirty-two one-sixth octave lters
were used for the BPF implementation. Delta and acceler-
ation coef cients were extracted from the MVN processed
static features. The zeroth coef cient was used since it is
shown to respond better to MVN than using the log energy.
Logarithmic compression was used for both feature sets.
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Fig. 2. Figure depicting the change in the time constants of the LPF in each
frequency channel. The center frequency of each channel is also shown.

3. VARYING TIME CONSTANTS

In the auditory model proposed by Yang et. al [3] the low-
pass lters in each channel model the inability of neurons in
the central auditory system to respond to fast temporal uc-
tuations. The time constants for all the low-pass lters were
the same. However, from a signal processing perspective the
combination of the recti er and the low-pass lter is an en-
velope detector and it is desirable to have envelope detectors
with varying time constants in different frequency channels.
Moreover, we know that the human auditory system has better
temporal resolution at higher frequency and higher frequency
resolution at lower frequencies. In order to mimic this behav-
ior the time constants (in msec) are set according to,

tc(i) =
k1

fs

(
fs

2
− fc(i)) + k2

where fc(i) is the center frequency of the ith channel and k1

and k2 are parameters used to set the range of time constants.
For the speech recognition tests we set k1 = 18.4 and k2 =
31. Figure 2 shows the variation of the time constants with
center frequency. The range of the time constants was chosen
empirically and is not the optimal operating point. There is
a tradeoff between a shorter time constant, which gives bet-
ter temporal resolution and better performance at low noise
levels, and longer time constants that give better noise robust-
ness. Choosing the time-constants based on the ambient SNR
would provide the best overall improvement (i.e. in all SNR
conditions). But this requires the use of a noise estimation
algorithm. Further, it should be noted that the time constants
also depend on the type of audio. In a physiological system
the time constants for speech are restricted both by the pro-
duction and the hearing mechanism, while for music or noise
this may not be the case.
The improved noise robustness can be explained as fol-

lows. Let the noisy speech signal be represented as,

x(t) = s(t) + n(t)

where s(t) is the speech signal and n(t) is the additive noise.
Assuming an acoustic signal can be expressed as,
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Fig. 3. Speech spectrum in clean condition with a) same time constant in each channel b) varying time constants in each channel. Spectrum in noisy condition
with c) same time constant in each channel d) varying time constants in each channel. As is clear, varying time constants help reduce the effect on noise on the
speech spectrum, especially in high frequency channels.

s(t) =
∑

i

esi
(t)vi(t)

where vi(t) is the carrier signal and esi
(t) is the modulating

signal in the ith channel. From Fig. 1 we see that for the ith

channel, output after the spatial derivative is,

(si(t) + ni(t))− (si+1(t) + ni+1(t))

or,

(esi
(t) ∗ vi(t)− esi+1(t) ∗ vi+1(t)) + (ni(t)− ni+1(t))

The output after the peak detector is

(esi
(t)− esi+1

(t)) + (eni
(t)− eni+1

(t))

where eni
(t) is the noise modulation in the ith channel. If

we assume that the noise spectrum is approximately at, the
noise term is dominated by the signal term. But in the gen-
eral, it is possible to adjust time constants in each channel
to selectively extract the speech modulation and hence weed
out the noise component, making the representation more ro-
bust to noise. Figure 3 shows the advantage of using varying
time constants. As can be seen from Figs. 3(a) and 3(b), in
clean conditions the two spectrums look the same. However
in the presence of noise, varying the time constants to suit
the speech modulation masks the noise to some extent lead-
ing to a better representation (see Figs. 3(c) and 3(d)). The
features extracted with varying time constants are referred to
as NRAF-TC.

4. ADAPTIVE GAIN COMPRESSION (AGC)

A further advantage of processing the speech signal using
BPF and envelope detectors is that since we already have the
envelope in each channel, adaptive gain compression can be
performed with very little additional computation. Anderson
et al. [8], [9] showed the usefulness of gain adaptation in hear-
ing aids. We follow the same approach in non-linearly com-
pressing the envelope in each channel. The relationship be-
tween the non-linearly compressed envelope and the original
envelope can be expressed as,

êsi
(t) = βeα

si
(t)

or,

logêsi
(t) = αlogesi

(t) + logβ

where esi
(t) is the original envelope and êsi

(t) is the com-
pressed envelope. α and β are computed based on the desired
range of compressed envelope. Features with adaptive gain
compression are referred to as NRAF-AGC. The improve-
ment afforded by AGC was evaluated for the speech versus
non-speech classi cation task and speech recognition on a
subset of the TIDIGITS database. White noise was syntheti-
cally added to generate the various SNRs. It should be noted
that NRAF-AGC was obtained by incorporating AGC in the
NRAF-TC implementation.
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5. RESULTS

5.1. Speech Versus Non-speech Classi cation

Figure 4 shows the relative performance of the NRAF, NRAF-
TC and NRAF-AGC features with respect to the baseline fea-
ture (MFCC). As expected, NRAF-TC improves the noise-
robustness of NRAF. Incorporating gain adaptation in the
NRAF-TC feature further boosts the performance.

5.2. Speech Recognition

The speech recognition results for the Aurora 2 task in clean
training condition are presented in Fig. 5. We used 12 compo-
nents per mixture for the silence model and 6 components for
every other state. NRAFs demonstrate a clear advantage over
MFCCs in noisy conditions. Varying time constants further
improves the performance. Gain adaptation gives an improve-
ment in low SNR conditions at the expense of slight deterio-
ration in the high SNR case. On the other hand by choosing
the parameters differently the performance in clean and high
SNR conditions can be improved at the cost of slight degra-
dation in low SNR conditions (see Table 1).
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Fig. 4. Figure showing the comparative performance of MFCC, NRAF,
NRAF-TC and NRAF-AGC for the speech versus non-speech classi cation
task. Different SNRs were obtained by synthetically adding pink noise. Root
compression was used for all the features.

Recognition results (training in clean condition)
NRAF NRAF (with NRAF (with NRAF (with
(no AGC) AGC, K=0.05) AGC, K=0.01) AGC, K=1.5)

Clean 99.51 % 99.48 % 99.42 % 99.54 %
20 dB 97.73 % 98.13 % 98.10 % 97.67 %
15 dB 95.73 % 96.50 % 96.56 % 95.61 %
10 dB 90.76 % 92.39 % 92.54 % 90.70 %
5 dB 79.71 % 83.02 % 83.79 % 79.09 %
0 dB 59.69 % 64.54 % 65.67 % 58.21 %
-5 dB 37.80 % 41.51 % 42.19 % 37.21 %

Table 1. Effect of AGC on the noise robustness of features. White noise
was synthetically added to obtain different SNRs. K determines the range of
the compressed envelope.
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Fig. 5. Figure showing the performace of NRAF and MFCC on Aurora
2 task. A six component mixture was used for each state and silence was
modeled using a 12 component mixture.

6. CONCLUSIONS

Noise-robust auditory features address some of the issues
leading to the poor noise robustness of MFCCs. This paper
presents further modi cations to the NRAF features that im-
prove its performance for speech processing tasks. Varying
the time constant comes at no extra cost while gain adapta-
tion adds a small overhead. It appears that adapting the time
constants and gain based on the SNR would further improve
the results. Initial results in this direction are encouraging.
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