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ABSTRACT

This paper investigates the use of features based on poste-
rior probabilities of subword units such as phonemes. These fea-
tures are typically transformed when used as inputs for a hidden
Markov model with mixture of Gaussians as emission distribution
(HMM/GMM). In this work, we introduce a novel acoustic model
that avoids the Gaussian assumption and directly uses posterior fea-
tures without any transformation. This model is described by a nite
state machine where each state is characterized by a target distri-
bution and the cost function associated to each state is given by the
Kullback-Leibler (KL) divergence between its target distribution and
the posterior features. Furthermore, hybrid HMM/ANN system can
be seen as a particular case of this KL-based model where state tar-
get distributions are prede ned. A recursive training algorithm to
estimate the state target distributions is also presented.

Index Terms— hybrid HMM/ANN system, posterior features,
KL-divergence, nite state machine.

1. INTRODUCTION

Posterior probabilities have recently gained importance in the au-
tomatic speech recognition (ASR) eld. They have been applied,
for instance, as con dence measures [1], beam search pruning [2]
or word lattice re-scoring [3]. Posteriors of subword units, such
as phonemes, can also be used in ASR. In this case, an arti cial
neural network (ANN) (typically a multi-layer perceptron (MLP))
whose outputs represent these subword units can be trained to esti-
mate these probabilities. Experiments have shown that this speech
representation outperforms spectral features, such as PLP or MFCC,
because of the long acoustic context used as input for the MLP and
its discriminative training procedure [4].

Phoneme posterior probabilities have mainly played two roles
in ASR. In Tandem [5], they are used as observation vectors in
a state-of-the-art HMM/GMM system. In this case, posteriors are
post-processed with a log-transformation and a KLT-based decorre-
lation to make these features more Gaussian-like and hence, easier
to be modeled by a GMM. However, since a Gaussian distribution
is only able to capture second order statistics, a mixture of Gaus-
sians is required to model the complexity of the data, thus increasing
the number of parameters of the system and hence, the amount of
needed training data

In hybrid HMM/ANN system [6], posterior features are used to
directly estimate the state emission probabilities of a HMM by us-
ing Bayes’ rule. In spite its well-founded mathematical formulation
(given some independence assumptions, HMM/ANN is able to es-
timate the global posterior probability of a model given a sequence

of acoustic data [7]), this approach does not obtain as good perfor-
mance as Tandem. This can be explained by the fact that each state
of the hybrid HMM/ANN model must correspond explicitly to an
MLP output. This rigidness does not allow to easily use strategies
that are often applied in conventional HMM/GMM approach such as
context-dependent phonemes as subword units or state-tying for pa-
rameter estimation. Context-dependent phonemes can be used as tar-
get labels for the MLP. In this case, states of the hybrid HMM/ANN
would represent these subword units but this approach becomes im-
practical for a large vocabulary task because it increases the size of
the MLP enormously.

In this paper, we present a novel acoustic model that alleviates
the rigidness of the hybrid HMM/ANN system. This model is rep-
resented by a nite state machine where each state is parameterized
by a target distribution. The cost function associated to every state
is given by the KL-divergence between this target distribution and
the posterior feature. In this way, states are not tied to a particular
MLP output and hence, they have more exibility to represent other
types of subword units without changing the structure of the MLP.
We also show that hybrid HMM/ANN system can be interpreted as a
particular case of this model where state target distributions are xed
and equal to a delta distribution. Furthermore, this system naturally
extends our previous work where we successfully applied posterior
features and KL-divergence to the template matching approach for
ASR [8].

This paper is organized as follows: Section 2 describes the hy-
brid system approach for speech recognition, Section 3 presents the
KL-based model, which can be seen as a generalization of the hy-
brid system, Section 4 explains the experiments and their results and
nally Section 5 gives conclusions and some ideas for future work.

2. HYBRID HMM/ANN SYSTEM

A hybrid HMM/ANN system is a HMM-based model where state
emission distributions are derived from posterior probabilities ob-
tained through an MLP.

A sequence of spectral-based features {xt}
T
t=1 of length T

is used as input vectors for the hybrid HMM/ANN system. For
each input vector xt, a vector of conditional posterior probabilities
zt = {p(qk|xt)}

K
k=1 is computed using an MLP1 with K outputs.

Since each HMM state is related to a particular MLP output,K also
denotes the number of HMM states.

The likelihood p(xt|qk) of a feature vector xt given the kth state
can be estimated using Bayes’ rule: posteriors are divided by their

1We are using this notation for the sake of simplicity, but in fact an acous-
tic context is used as input of the MLP, hence, the rigorous notation should
be p(qk|x

t+Δ
t−Δ

).

IV ­ 6571­4244­0728­1/07/$20.00 ©2007 IEEE ICASSP 2007



prior probabilities to obtain scaled likelihoods, which are used as
emission distributions.

Transition and prior probabilities can be ignored without affect-
ing signi cantly the nal performance of the system since these
terms can be assumed to be uniformly distributed. Therefore, by
taking logarithm and changing the sign, the cost function given by
the model corresponding to the wordW can be expressed by:

JW (xT
1 ) = min

φW

TX
t=1

− log p(qφt
|xt) (1)

where φW represents the set of all possible state sequences of length
T allowed by the word W . This minimization can be ef ciently
obtained by applying Viterbi algorithm. by segmentation given by
the model on the training data. Also a version of th

The main limitation of the hybrid HMM/ANN system is that
MLP outputs are tied to HMM states. This system usually con-
siders context-independent phonemes as subword units since MLP
outputs tipically represent phonemes. Choosing another type of sub-
word unit, such as context-dependent phonemes, implies changing
the structure of the MLP and, if the number of possible subword
units is too large, it can be a problem for training since there must be
an MLP output for each unit.

3. PROPOSED KL-BASEDMODEL

3.1. Model Description

The description of this new model is based on the structure of the
hybrid HMM/ANN system. From the previous section, we have seen
that a sequence of posterior features {zt}

T
t=1 is obtained from the

spectral-based features {xt}
T
t=1 through an MLP. These posterior

features are discrete probability distributions on the state space. A
similarity measure between two posterior distributions y and z can
then be based on the KL-divergence [9]:

KL(y || z) =
KX

k=1

y(k) log
y(k)

z(k)
(2)

Using the above KL-divergence de nition, we can rewrite Equa-
tion 1 as

JW (xT
1 ) = min

φW

TX
t=1

KL(δφt
|| zt) (3)

where δk is de ned as the discrete delta distribution centered on the
kth state.

Equation 3 allows us to extend the hybrid system to a more gen-
eral model by substituting the delta distribution δk by a posterior
vector yk that characterizes the kth state. This posterior vector is de-
noted as state target posterior distribution. Then, the cost function
of this model becomes

JW (xT
1 ) = min

φW

TX
t=1

KL(yφt
|| zt) (4)

The model described by the above equation can be de ned as a
nite state machine where each state has an associated cost given by
the KL-divergence between its corresponding target distribution and
the posterior vector obtained from the input acoustic feature. This
idea is illustrated in Figure 1.

In this new model, states are not tied to particular outputs of
the MLP but they are only characterized by their target posterior

q1 q2 q3

KL(y1 || zt) KL(y2 || zt) KL(y3 || zt)

Fig. 1. Scheme of KL-based model for a word formed by three
phonemes. The cost function of the state qk is given by the KL-
divergence between its associated state target distribution yk and the
posterior feature zt given at time t.

distributions. States can thus represent other types of subword units
that are not related with MLP outputs. For instance, we can easily
use context-dependent phonemes without changing the structure of
the MLP.

Furthermore, each target posterior distribution describes the pro-
nunciation of the subword unit represented by its corresponding
state. In this way, pronunciation variants can be modeled from the
training data, avoiding thus to add manually multiple phonetic tran-
scriptions to the dictionary.

3.2. Training

In this work, we consider that the MLP for obtaining the phoneme
posteriors is xed and already trained. Hence, the parameters of the
KL-based model that must be estimated are the state target posterior
distributions {yk}

K
k=1. The criterion for estimating these parameters

is based on minimizing the total cost function described in Equa-
tion 4 over a given training set. An iterative algorithm for training
is presented here based on Viterbi segmentation. Through global
convergence theorem [10], this algorithm ensures that the total cost
function is minimized at each iteration and converges to a local min-
imum because KL-divergence is a convex function.

1. Training data is segmented uniformly according to the pho-
netic transcriptions.

2. Target distributions are computed to minimize the distance
according to the segmentation. Given a set of posterior vec-
tors {zi}

N
i=1 corresponding to the same state qk, the target

posterior distribution yk that minimizes the total distance can
be computed as2

yk(l) =
ỹk(l)PK

d=1
ỹk(d)

and ỹk(l) = N

vuut NY
i=1

zi(l) (5)

where the yk(l) denotes the lth component of the target dis-
tribution corresponding to the kth state.

3. Training data is segmented to minimize the global cost func-
tion using Viterbi algorithm.

4. Steps 2 and 3 are repeated until convergence of the cost func-
tion.

One advantage of this algorithm is that it starts from uniform
segmentation and hence, the training set does not need to be labeled.

2The proof is presented in the appendix.
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3.3. Derivations of the KL-based model

We can further extend this new model by substituting the KL-
divergence used for computing the cost function by other metrics
between distributions. In this work, we have explored two deriva-
tions of the KL-divergence:

• Since KL-divergence is not symmetric, we can switch
the term of Equation 2 to obtain the reverse KL (RKL):
RKL(y || z) = KL(z || y). In this case, instead of Equa-
tion 5, the minimum distance is given by

yk(l) =
1

N

NX
i=1

zi(l) (6)

• Also, the symmetric version of KL (SKL) can also be studied:
SKL(y || z) = KL(y || z)+KL(z || y). Since no closed so-
lution exists for estimating the state target distributions in this
case, we have used a convergent iterative procedure presented
in [11].

4. EXPERIMENTS AND RESULTS

Experiments have been carried out to explore the properties of the
KL-based model described in the previous section. The task chosen
in this work consists in continuous speech recognition on the num-
bers database [12]. The lexicon is formed by 30 words using 27
different phonemes and the MLP for generating the phoneme poste-
riors has been trained on a smaller version of the same database and
is xed for all experiments. Each subword unit (context-dependent
or -independent phonemes) has 3 states and equivalently, a mini-
mum duration constraint of 3 frames has been imposed to the hybrid
HMM/ANN system. Also, word insertion penalty is used to equal-
ize deletion and insertion errors and a single phonetic transcription
is used per word. The test set is formed by 3576 utterances.

A rst comparison was carried out between the KL-based model
and the hybrid HMM/ANN system. States of the KL-based model
represent context-independent phonemes for a fair comparison with
the hybrid HMM/ANN system. A different number of training ut-
terances was used for training the KL-based model to investigate the
effect of training set size.

Model # utterances Accuracy
Hybrid HMM/ANN - 89.8

KL 100 89.2
KL 200 91.0
KL 500 91.2
KL 1000 91.2
KL 2000 91.2
KL 5000 91.3

Table 1. System accuracy for both models. Different number of
training utterances have been used for the KL-based model. Since
in this work we are not considering the transition probabilities, no
training les are required for the hybrid HMM/ANN model.

The increase in performance of the KL-based model when com-
pared to hybrid HMM/ANN can be explained because of the higher
exibility for the state representation. As explained in Section 3,
state target distributions are xed for the hybrid case, whereas they
are estimated for the KL-based model. Interestingly, signi cant im-
provement is already achieved with a reduced number of training

data (200 utterances) and the further increase of the training set does
not affect signi cantly the performance because of the reduced num-
ber of parameters.

We describe an example to illustrate how state target distribu-
tions can automatically model pronunciation variants using this KL-
based model: words “four” and “oh” are phonetically transcribed as
/f ao r/ and /ow/ respectively; “four” is sometimes misrecognized
as “oh” because “four” can also be pronounced as /f ow r/. In the
hybrid approach, a new transcription should be added manually to
the system dictionary. Nevertheless, KL-based model is able to deal
with this variation by selecting more appropriate target distributions
for the states associated to the phonemes /ao/.

Phoneme 1st state 2nd state 3rd state
r 0.0 0.0 0.4
ao 0.3 0.1 0.2
ow 0.7 0.9 0.4

Table 2. Target distributions for the states corresponding to the
phoneme /ao/ for the KL-based model.

In Table 2 we can see that the target distributions for the
states corresponding to the phoneme /ao/ have been split into the
phonemes /ao/ and /ow/. Also, /r/, which is the following phoneme
for “four”, has already been represented in the last state. In this way,
KL-based model can better model the variability and therefore, the
mismatch between “four” and “ow” have thus been alleviated with-
out modifying the dictionary.

In the next experiment, we use context-dependent phones as sub-
word units. We compare the performance of our model with Tandem
system. Also, derivations of the KL-based model are evaluated.

# utterances KL RKL SKL Tandem
100 91.8 91.4 91.8 88.1 (5)
200 92.6 92.6 93.0 90.1 (7)
500 93.0 92.8 93.2 91.9 (7)
1000 93.3 93.0 93.6 93.2 (7)
2000 93.4 93.1 93.8 94.0 (10)
5000 93.5 93.4 94.0 95.0 (14)

Table 3. System accuracy for context-dependent KL-based model.
Different sets of training utterances have been used. For the Tandem
system, the number of Gaussians per state has also been indicated
between parentheses.

From the above table, we can observe that our approach outper-
forms Tandem when a limited amount of training data is available.
Indeed, one of the main drawbacks of Tandem is that a large amount
of data is required to estimate all the parameters of the GMM. For
example, in the case of using 5000 training utterances, the best per-
formance of Tandem is achieved when using 14 Gaussians per state,
since diagonal covariance matrices are used, a total of (14 compo-
nents x [27 mean coef cients + 27 covariance coef cients] + 13
weights) 769 parameters are needed per state, while in our approach
we only use 27 parameters. Hence, our approach is faster and con-
sumes less computational resources than conventional HMM/GMM.

5. CONCLUSIONS AND FUTUREWORK

In this paper, we have presented an extension of the hybrid sys-
tem that alleviates some constraints of the hybrid HMM/ANN sys-
tem while maintaining the actual interpretation of posterior features.
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Based on the experiments carried out on a continuous speech recog-
nition task, the following properties of this new acoustic model can
be drawn:

• Using a minimum amount of training data (only 200 utter-
ances), KL-based model can signi cantly improve the accu-
racy of the hybrid system.

• This system can easily use to model context-dependent
phonemes as subword units. In this case, results are com-
parable to more sophisticated systems, like Tandem.

• When reduced amount of training data, this model is particu-
larly suitable because of its limited set of parameters (a single
target posterior distribution characterizes each state).

A promising research direction is based on tting this model
into a probabilistic framework by nding an appropritate emission
distribution for posterior features. Hence, all the advantages of the
HMM theory could be exploit, such as Expectation-Maximization
(EM) method for parameter estimation or discriminative training.
Furthermore, similarly to Tandem, where a mixture of Gaussians is
used as emission distribution, a mixture of posterior-based distribu-
tions could also be used to increase the capacity of the system and
then performance of the system could improve when increasing the
amount of training data.

6. APPENDIX

In this section, the proof for obtaining the state target posteriors
distributions that minimizes Equation 4, once the segmentation has
been xed, is given for the KL and RKL metrics:
KL: The problem is de ned as: Given a set of posterior vectors

{zi}
N
i=1, nd yk (the target distribution of state qk) such that

minimizes

f(yk) =
NX

i=1

KL(yk || zi) (7)

Since yk is also a posterior vector, the constraint
PK

n=1
yn

k =
1 must be satis ed. We use the method of Lagrange’s multi-
pliers to nd the solution:

∂

∂yk(l)

"
NX

i=1

KL(yk || zi) + λ

 
KX

n=1

yk(n)− 1

!#
= 0

(8)
After some computations, we nd that

yk(l) = λ
′ N

vuut NY
i=1

zi(l) (9)

where λ′ is the normalization factor that satis es the con-
straint.

RKL: Similarly to the KL case, the function to be minimized is

f(yk) =
NX

i=1

KL(zk || yi) (10)

and after similar computations as the previous case, we obtain

yk(l) =
1

N

NX
i=1

zi(l) (11)
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