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ABSTRACT 
 

In a recent study, we proposed soft margin estimation (SME) to 
learn parameters of continuous density hidden Markov models 
(HMMs). Our earlier experiments with connect digit recognition 
have shown that SME offers great advantages over other state-of-
the-art discriminative training methods. In this paper, we illustrate 
SME from a perspective of statistical learning theory and show that 
by including a margin in formulating the SME objective function it 
is capable of directly minimizing the approximate test risk, while 
most other training methods intent to minimize only the empirical 
risks. We test SME on the 5k-word Wall Street Journal task, and 
find the proposed approach achieves a relative word error rate 
reduction of about 10% over our best baseline results in different 
experimental configurations. We believe this is the first attempt to 
show the effectiveness of margin-based acoustic modeling for large 
vocabulary continuous speech recognition. We also expect further 
performance improvements in the future because the approximate 
test risk minimization principle offers a flexible and yet rigorous 
framework to facilitate easy incorporation of new margin-based 
optimization criteria into HMM training. 
 

Index Terms— soft margin estimation, test risk, statistical 
learning, lattice 

1. INTRODUCTION 

Recently discriminative training (DT) methods have been 
extensively studied to boost the automatic speech recognition 
(ASR) system accuracy. The most successful methods are 
maximum mutual information estimation (MMIE) [1], minimum 
classification error (MCE) [2], and minimum word/phone error 
(MWE/MPE) [3]. MMIE separates different competing classes by 
maximizing the posterior probability. On the other hand MCE 
directly minimizes approximate string errors, while MWE/MPE 
attempts to optimize approximate word and phone error rates. If 
the acoustic conditions in the testing set match well with those in 
the training set, these DT algorithms usually achieve very good 
performance in testing. However, such a good match can not 
always be expected for most practical recognition conditions.  

From a statistical learning theory point of view [4], a test risk 
is bounded by the summation of two terms, an empirical risk and a 
generalization function. Ordinary DT methods only minimize the 
empirical risks, while the power to deal with possible mismatches 
between the training and testing conditions can often be measured 
by the generalization ability of the machine learning algorithms. In 
particular, large margin learning frameworks, such as support 
vector machines (SVMs) [5], have demonstrated superior 
generalization abilities over other conventional classifier learning 

algorithms. By securing a margin from decision boundaries, correct 
decision can still be made if the mismatched test samples fall 
within a tolerance region around the decision boundaries defined 
by the margin. Adopting the concept of enhancing margin 
separation, large margin estimation (LME) [6] and its variant, large 
relative margin estimation (LRME) [7], of HMMs have been 
recently proposed. In essence, LME and LRME update the models 
only with accurately classified samples as if the training set is 
indeed separable. Nevertheless, it is well known that misclassified 
samples are also critical for classifier learning. Recently, LRME is 
modified [8] to consider all the training samples, especially for the 
most wrongly classified sample, and move this sample in the 
correct decision direction. However, this modification makes the 
algorithm vulnerable to outliers and the idea of margin not as 
meaningful. In [9], a large margin algorithm for learning Gaussian 
mixture models (GMMs) was proposed.  

In [10], we propose SME as a unified DT framework for 
discriminative separation, frame selection and utterance selection. 
Because of the incorporation of a soft margin into the optimization 
objective SME achieves better generalization capability and less 
recognition errors over LME and MCE. In this study, we illustrate 
the SME theory and show that the objective [10] approximates a 
bound of the test risk expressed as a sum of an empirical risk and a 
function of Vapnik & Chervonenkis dimension, or VC dimension, 
commonly known in statistical learning theory [4]. This is in 
contrast to most DT methods which attempt to minimize only the 
empirical risks. We also show that different choices of separation 
measures in loss functions lead to various approximate test risks 
that can be formulated as functions of string, word and phone 
errors and their combinations. We can therefore make use of 
popular losses already been used in conventional DT methods, and 
existing margin functions in large margin learning frameworks. 
This makes SME flexible and capable of incorporating new loss 
and margin definitions in a theoretically rigorous manner. 

We evaluate SME’s effectiveness on the 5k-word Wall Street 
Journal (5k-WSJ0) task. Two additional separation measures are 
proposed to take advantage of more string competition in lattices 
obtained in speech recognition. One is similar to the currently most 
successful DT algorithms by defining corresponding separation 
measures with statistics collected from a lattice using forward 
backward methods. The other is to define separation measures 
using word pairs appearing in a lattice. We compare the 
performance of the second method (SME-lattice) with those of 
maximum likelihood estimation (MLE) and SME with the most 
competing string (SME-best) proposed in [10]. Initial results on 
the 5k-WSJ0 task show that SME-lattice outperforms both MLE 
and SME-best. We expect to achieve further improvements with 
flexible combinations of loss and margin function definitions. 
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Table 1: Discriminative training target function and loss function 
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2. TEST RISK BOUND 

Most discriminative training methods directly minimize the risk on 
training set, i.e. the empirical risk, which is defined as: 
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,
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where Λ is the set of model parameters, ( )Λ,ii X  is the loss 

function for utterance Xi, and N is the total number of training 
utterances. This is shown in Table 1 listing the optimization 
objectives and loss functions of MMIE, MCE and MPE. iS  is the 

correct transcription and iŜ denotes possible string sequence for 

utterance Xi. In MMIE and MPE, ( )ii SxP ˆ
Λ  and ( )iSP ˆ  are acoustic 

and language model scores, respectively. In MCE, fi is a 
misclassification measure defined as the difference between a 
geometrical average of log likelihoods of competing strings and 
log likelihood of the correct string. γ and θ are parameters for 
sigmoid function. With these loss functions, these DT methods can 
all be considered as to minimize some empirical risks. 

However, minimizing the empirical risk does not necessarily 
imply an optimal performance on the testing set. This can be well 
explained in statistical learning theory [4].  It is shown that with at 
least probability δ−1 ( δ is a small positive number) the risk on 
the test set, i.e. the test risk, is bounded as follows: 
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VCdim is VC dimension that characterizes the classifier complexity, 
and can be interpreted as the maximum number of points that can 
be shattered by the given classification function group. This 
inequality shows that the test risk is bounded by the summation of 
two terms, the first is the empirical risk, and the second is a 
generalization (regularization) term which is a function of the VC 
dimension. Most discriminative training methods, such as MMIE, 
MCE, and MWE/MPE in Table 1, focus attentions on reducing the 
empirical risks, differing only in the choice of the loss functions, 
and do not consider decreasing the generalization term. 

3. SOFT MARGIN ESTIMATION 

In this study, we attempt to provide a theoretical perspective about 
SME, showing that SME directly minimizes an approximate test 
risk. The idea behind the choice of the loss function for SME is 
then illuminated. Finally we specify on the definition of separation 
functions. DT algorithms, such as MMIE, MCE, and MWE/MPE, 
can also be cast in the rigorous SME framework by defining 

corresponding separation functions. The solution to SME has been 
described in detail in [10], and will not be addressed here. 

3.1 Approximate Test Risk Minimization 
If we can directly minimize the right hand side of inequality (1), 
we can attempt to minimize the test risk. However, as a monotonic 
increasing function of VCdim, the generalization term can not be 
directly minimized because it is hard to compute VCdim. It can be 
shown that VCdim is bounded by a decreasing function of a margin 
function [4]. Hence VCdim can be reduced by increasing margin. 
Now, we have two targets for optimization, one is to minimize the 
empirical risk, and the other is to maximize margin. 

We can define the SME optimization objective as follows [10]: 
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where ρ  is the soft margin, λ  is a coefficient to balance the soft 
margin maximization and the empirical risk minimization. A 
smaller λ  corresponds to a higher penalty for the empirical risk. 

Because of the relations between soft margin ρ , VCdim, and the 

generalization term, ρλ  has the same trend as the generalization 

term in Eq. (1), and can be used to approximate the generalization 
term. Consequently, SME directly minimizes an approximate test 
risk by minimizing the objective function in Eq. (2). This view 
distinguishes SME from both ordinary DT methods which only 
minimize the empirical risk ( )ΛempR  and LME which only reduces 

the generalization term by minimizing ρλ  in Eq. (2). 

3.2 Loss Function Definition 
The next issue is to define the loss function ( )Λ,ii X  for SME. As 

shown in Figure 1, the essence of margin-based method is to use a 
margin to secure some generalization in classifier learning. If the 
mismatch between the training and testing tests only causes a shift 
less than this margin in the projected space, a correct decision can 
still be made. So a loss happens when the separation is less than a 
soft margin. Therefore, the loss function can be defined as: 
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with the SME objective function re-written as: 
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3.3 Separation Measure Definition 
The third step is to define a separation (misclassification) measure, 

( )Λ,ii Xd , which is a distance between correct and competing 
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hypotheses. In [10], we defined the SME separation measure, 

( )Λ,_
i

utterSME Xd
i

, which is a frame selection based log likelihood 

ratio of the correct and most competing string in utterance Xi. We 
can also define similar separation measures corresponding to 
MMIE, MCE, and MPE as shown in Table 2. All these measures 
can be put back into Eq. (3) for HMM parameter estimation. 
 

 
Figure 1: Soft margin estimation 

 
Table 2: Separation measure for SME 
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4. SME ON LVCSR 

The key issue for using SME in LVCSR is to define appropriate 
model separation measures. One method is to directly use 

( )Λ,_
i

utterSME Xd
i

 in Table 2, and solve for HMM parameters by 

minimizing the quantity in Eq. (3). However, most successful DT 
methods on LVCSR use lattice to get a rich set of competing 
candidate information. The advantage can also be explained by the 
test risk bound in Eq. (1). Lattices provide more competing 
samples, which increase the number of training samples or a 
reduced generalization term, which makes a test risk bound tighter.  

In the following, we provide two solutions for lattice-based 
separation measure definition for LVCSR. 

4.1 Separation Definition in Utterance Level 
The first one works in the similar way to lattice-based MMIE [11], 
MCE [12] and MPE [3], and define separation measures, 

( )Λ,_
i

MMIESME Xd
i

, ( )Λ,_
i

MCESME Xd
i

, and ( )Λ,_
i

MPESME Xd
i

 , as 

shown in Table 2. With this kind of measures, we can easily take 
advantage of the optimization algorithms adopted in current lattice-
based DT method, i.e. to use forward backward algorithms to get 
statistics from a lattice at the utterance level and then use extended 
Baum Welch algorithms to optimize parameters. However, because 
of the focus on utterance level competition, we may lose the 

advantage of the frame-level discrimination power in the SME 
separation measures as analyzed in [10].  

4.2 Separation Definition in Word Level 
We can also define SME separation measures at the word 

segment level. We first align the utterance with the correct 
transcription and get the timing information for every word. Next 
we find competing words for every word in the lattices. This is 
done by examining the lattice to get words falling into the time 
segment of the current correct transcription words. We need to set 
a frame overlapping threshold, so that we don’t consider words 
with too few overlapping frames as competing words. For example, 
in Figure 2, we can get competing words as listed in Table 3. 
Finally we figure out the frames that are overlapped between the 
correct word and competing word. For each overlapping word pair, 
we denote the number of overlapped frames as no, the jth 
overlapping frame as Xoj, the overlapped frame set as Fo, and the 
target and competing words as Wtarget and Wcomp. A word level 
separation can be defined as: 
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Figure 2: Lattice example. The top lattice is obtained in decoding, 
and the bottom is the corresponding utterance transcription. 
 

Table 3: Correct and competing words for lattice example 
Correct Word Competing Words 
the That 
world wood, it, dig 
is it, dig, did, wonderful 
wonderful want, full, foul, order, dig, did, wander, for 

The word level separation measure, ),(_ Λi
wordSME

o Xd , is better 

than utterance level measure, ( )Λ,_
i

utterSME Xd
i

, because with the 

usage of word pairs in lattices, it can employ much more confusion 

patterns than ( )Λ,_
i

utterSME Xd
i

, which only use the correct and the 

most competitive strings. For usage in SME, ),(_ Λi
wordSME

o Xd may 

also have an advantage over separation measures defined in 
Section 4.1, which have only one value for each utterance. In SME 
we will plug this separation value into Eq. (3), and the utterances 
with values greater than the value of the margin will not contribute 
to parameter optimization. However in some cases, there may be 
some word pairs in lattices that still have distances less than the 

sil 

sil 

world wonderful sil 

sil 

world it 

that wood wonderful 

want full 
sil 

sil 

sil dig 

did 
wander 

order 

for 

foul 

sil is the 
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value of the margin. The word level ),(_ Λi
wordSME

o Xd makes use of 

those word pairs to get more confusion patterns. 

5. EXPERIMENT 

We used the 5k-WSJ0 task to evaluate the effectiveness of SME on 
LVCSR. The training material is SI-84 set, with 7077 utterances 
from 84 speakers. The testing material is Nov92 evaluation set, 
with 330 utterances from 8 speakers. Baseline HMMs are trained 
with MLE using HTK. The HMMs are within-word triphone 
models. There are totally 2329 shared states obtained with a 
decision tree and each state observation density is modeled by an 
8-mixture GMM. The input features are 12MFCCs + energy, and 
their first and second order time derivatives. The bigram and 
trigram language models (LMs) within the 5k-WSJ0 vocabulary 
were used for decoding. The baseline WERs are 8.41% with 
bigram LM and 6.13% with trigram LM, respectively. Other 
research site baselines may be better than our baseline by using 
different configurations. In this study, because we don’t have 
access to those baseline configurations, we only improve over our 
best available setup. Our HTK-trained baselines are comparable 
with the HTK-trained results reported in [13], and recent results in 
[14]. We expect to improve over higher baseline results as well. 

We used the bigram LM to get seed lattices for the training 
utterances. Seed lattices were generated only once. At every 
iteration, the recently updated HMMs were incorporated into 
generating new lattices by using seed lattices as decoding word 
graphs. After that, SME was used to update HMM parameters. 
This greatly improves the lattice generation speed. Two SME 
methods are used here. One, denoted by SME_utter, is based on 

separation measure, ( )Λ,_
i

utterSME Xd
i

, in Table 2. The other, 

denoted by SME_word, is based on the word level separation 

measure, ),(_ Λi
wordSME

o Xd , defined in Eq. (4). 

In Table 4, the WERs obtained with these two SME methods 
and MLE are compared with. Both SME methods achieved better 
WERs than MLE. By taking advantage of lattices, SME_word is 
better than SME_utter because SME_word offers much more 
confusion patterns than SME_utter, which only uses most 
competitive string in an utterance. SME_word decreased WERs 
significantly from MLE, with the relative WER reductions of 12% 
for bigram LM and 9% for trigram LM, respectively.  

 
Table 4: Performance comparison on the 5k-WSJ0 task 

WER Bigram Trigram 
MLE 8.41% 6.13% 
SME_utter 8.14% 5.94% 
SME_word 7.38% 5.60% 

6. CONCLUSION 

From the view of statistical learning theory, we show that SME can 
minimize the approximate risk on the test set. This is in contrast 
with most discriminative training methods, which only minimize 
the risk on the training test. The choice of various loss functions is 
illuminated and different kinds of separation measures are defined 
under a unified SME framework. We apply SME to LVCSR by 
defining separation measures at both the utterance and word levels. 
Because of the usage of much more confusion patterns in lattices, 
SME with word level separation measures performs better than 
SME with utterance level separation measures. Tested on the 5k-

WSJ0 task, SME with word level separation measures achieves 
about 10% relative WER reduction over our best MLE baselines. 

This paper is our first study to apply SME to LVCSR. We are 
now working on many related research issues. The first is to design 
a good optimization method than the generalized probabilistic 
descent algorithm which is slow in convergence. More efficient 
parameter update methods will be explored later. Second, we will 
apply separation measures defined in Section 4.1 on SME. Third, 
we will explore more elaborated definitions of margin functions to 
tightly couple it with the definition of the empirical risks.  
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