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ABSTRACT
It is often acknowledged that HMMs do not properly model

phone and word durations. In this paper phone and word dura-
tion models are used to improve the accuracy of state-of-the-art
large vocabulary speech recognition systems. The duration in-
formation is integrated into the systems in a rescoring of word
lattices that include phone-level segmentations. Experimental
results are given for a conversational telephone speech (CTS)
task in French and for the TC-Star EPPS transcription task in
Spanish and English. An absolute word error rate reduction of
about 0.5% is observed for the CTS task, and smaller but con-
sistent gains are observed for the EPPS task in both languages.
Index Terms – Speech recognition

1. INTRODUCTION
It is well known that HMMs do not properly model

phone and word durations. Even if just the state dura-
tion is considered, regular HMMs do not offer a realistic
model for duration [1]. The transition probabilities usu-
ally have no impact on the recognizer accuracy. It is often
said that a uniform distribution can be more appropriate
than the distribution given by the transition probabilities
estimated on the training data.

When using triphone HMMs (with derivative features),
the segment durations (state and phone) are encoded in
the model topology and the derivative features in addi-
tion to the transition probabilities. None of these model
parameters can properly capture segment duration when
considering a context wider than a triphone. More spe-
ci c duration models must be used to adequately model
longer span durations. Duration features can be added at
various levels of the acoustic models so as to represent
HMM state durations, phone durations, and word dura-
tions. In this work only the phone and word durations are
considered, and they are used in a post-precessing step by
rescoring word lattices with phone segmentations. (A re-
viewer informed us of previous work using lattices [10]).

The word lattices must include the phone segmentation
for each word edge, i.e. the word lattices can be seen as
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phone lattices with lexical constraints. Lattice rescoring
is a more desirable method than N -best rescoring for at
least two reasons. First, rescoring word lattices instead of
N -best lists is more accurate and more ef cient. Second,
N -best rescoring does not t very well with consensus
decoding which is known to signi cantly reduce the word
error rate over a regular MAP decoding [6]1, i.e. the gain
due to the use of duration models may be lost by backing
off to MAP decoding if N -best rescoring is used.

The following sections descibe the duration models
used in this work and how they are used in the speech
recognizer. Experimental results are given for a conversa-
tional telephone speech (CTS) task in French and for the
TC-Star European Parliament Plenary Sessions (EPPS)
transcription task in Spanish and English.

2. DURATION MODELING
As stated in the introduction, HMMs do not prop-

erly model the speech segment durations, this is partic-
ularly true when only considering the transition probabil-
ities. The empirical distributions of phone durations in
the French CTS training data obtained after performing
a forced alignment (via Viterbi decoding) of the ortho-
graphic transcriptions (with a dictionary allowing alter-
native pronunciations) and the acoustic data are shown
in Figures 1 and 2. The vowel distributions are given in
Figure 1 and the consonant distributions are in Figure 2.
Other phones not represented in these two gures are the
semi-vowels and the special phones used for hesitations
and pauses. It can be seen that these distributions are
mostly unimodal. Some distributions are strictly decreas-
ing (the schwa vowel and the liquid l) showing that the
minimal duration imposed by the three state left-to-right
HMM modeling each phone may not be appropriate for
these phones. Looking at these distributions, it is appar-
ent that phone duration can be helpful to differentiate the
phones. The three state left-to-right topology implies that
the pdf of the phone duration is the convolution of three
geometric distributions. It is known that this does not re-

ect reality as is illustrated in Figure 3 where the empir-
ical distribution for the triphone e(s,t) (phone [e] in the

1N -best consensus decoding is less effective than regular consensus
decoding.
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Figure 1: Empirical duration distribution for 13 vowels in the
140 hour French CTS corpus. (Horizontal axis in seconds.)

context (/s/, /t/)) observed in the French CTS corpus is
represented along with a 3-state geometric pdf, a gamma
pdf, and a Gaussian mixture pdf whose parameters are
estimated on the CTS training data. By comparing these
distributions, it is clear that the Gaussian mixture pdf is a
better approximation than the 3-state geometric pdf and
the gamma pdf. The gamma pdf is shown here since it
has often been used to model HMM state durations and
phone durations [1, 5, 2, 8].

Directly modeling the word duration with a pdf [9]
may be a viable solution for small vocabulary tasks, in
particular for short words (1 or 2 syllables), but for large
vocabularies it is more appropriate to use a model with a
back-off mechanism (in case a word rarely or never oc-
curs in the training data), and with the capability to also
model phone durations within a word. The model pro-
posed by Gadde [7] was adopted here, where each word
is represented by a vector composed of the durations of
the individual phones in the word. Phone and word du-
rations are modeled with Gaussian mixtures, using word
duration (seen as a vector of phones) when enough data is
available to properly estimate the word model, and back-
ing off to phone durations if this is not the case. As in [7]
the duration models are used in a post-decoding step, but
instead of applying such post-processing to an N -best
list, it is applied to a word lattice. The augmented edge
likelihood is the product of the HMM likelihood and the
duration likelihood properly scaled.

3. MODEL ESTIMATION
Given a training corpus with orthographic transcrip-

tions, the phone and word durations are obtained after
forced alignment between the phone transcriptions (as
given by the pronunciation dictionary) and the speech
signal, using a set of tied-state context-dependent phone
models. For all the experiments reported in this paper, the
acoustic models include about 10K tied HMM states with
32 Gaussians per state (cf. the decoding section (Sec-
tion 4 for more details about the recognizer models).

Given the phone segmentations, for each word pronun-
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Figure 2: Empirical duration distribution for 17 consonants in
the 140 hour French CTS corpus. (Horizontal axis in seconds.)
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Figure 3: Duration pdf for the phone /e/ in context /(s,t)/ in the
French CTS training corpus: empirical distribution; multigaus-
sian distribution (4 Gaussians); gamma distribution; and convo-
lution of three geometrical distributions (for a 3-state HMM).
(Horizontal axis in seconds.)

ciation H = (h1, . . . , hNH
) observed in the training data,

the parameters of an NH dimensional Gaussian mix-
ture (GMM) representing the pdf f(d1, . . . , dNH |H, W )
are estimated, where d1 . . . dNH

are the duration of the
phones in the word pronunciation H of the word W . As
is usually done for GMMs, the pdf parameters are es-
timated by using the EM algorithm starting with a sin-
gle Gaussian and iteratively splitting each Gaussian until
the desired number of mixture components is reached.
Since a very large vocabulary system is being targeted,
the sparse training problem is a major issue as a large
proportion of the words in the recognizer vocabulary are
never or rarely observed in the acoustic training data. Ta-
ble 1 contains the proportions of pronunciations with no
more than n occurrences in the French CTS training data.
The recognizer vocabulary contains 50K words and about
74K pronunciations. It can be seen that about 56% of the
prononunciations2 are never observed in the training data,

2The term pronunciation here is used to refer to a particular pronun-
ciation of a given word.
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n %pron %occurences
0 55.6% 0.9%
1 73.3% 1.4%
2 80.4% 1.9%
5 88.3% 2.9%

10 92.5% 4.1%

Table 1: Proportion of pronunciations with no more than n
occurrences in the French CTS training data. Column 3 gives
the corresponding proportions of running words in the dev data.

and about 80% of the prononunciations occur at most
twice, and only 8% of the pronunciations occur more
than 10 times in the acoustic training data. This clearly
demonstrates the data sparseness issue and the need for a
smoothing and/or a back-off mechanism. The third col-
umn of Table 1 gives the corresponding proportions of
the running words in the recognizer hypotheses on a set
of development data (i.e. the counts are weighted by the
word frequencies). These proportions show that words
that are rare in the training data are generally also go-
ing to be rare in the data to be processed by the systems.
Therefore, even though there is a data sparseness prob-
lem, it should not have too large an effect on the word
error rate since only 4% of the hypothesized pronuncia-
tions occur fewer than 10 times in the training data.

Combining MAP smoothing [3] and back-off to phone
models [7] gave the best results on the development data.
The prior pdf for each pronunciation model is obtained
from the single Gaussian model of each phone compos-
ing the pronunciation. If the number of occurrences for
a given pronunciation in the training data is lower than
20, we just back-off to the phone models. Here it should
be noted that the back-off phone models can be GMMs
whereas the MAP smoothing can only rely on a single
Gaussian phone pdf, as there is no easy way to get an ad-
equate prior pdf for a word pronunciation from the GMM
phone models, even though diagonal covariances are used
for the pronunciation duration vectors.

The multivariate word duration pdfs are therefore esti-
mated as follows:

f(d1, . . . , dNH
|H, W ) ={

fm(d1, . . . , dNH |H,W ) if C(H, W )) > Ct,∏NH

i=1 f(di|pH,i) otherwise
(1)

where fm(·|H,W ) is the MAP estimate of the duration
model for the word pronunciation (H, W ), C(·) is the
frequency of the word pronunciation in the training cor-
pus, pH,i is the i-th phone of the pronunciation H , and
Ct is the frequency count threshold. In the current imple-
mentation both the MAP prior pdfs and the phone back-
off pdfs are context independent. The threshold parame-
ter and the pdf prior weight were optimized by maximiz-
ing the likelihood of the development data.

4. DECODINGWITH DURATION MODELS
For the three systems on which experimental results

are reported, decoding is carried out in multiple passes
where the hypothesis of one pass is used by the next pass
for acoustic model adaptation. For each decoding pass,
the acoustic models are rst adapted using both the CM-
LLR and MLLR adaptation methods. MLLR adaptation
relies on a tree organization of the tied states to create
the regression classes as a function of the available data.
Then a word lattice is produced for each speech segment
using a dynamic network decoder with a 2-gram or a 3-
gram language model. This word lattice is rescored with
a 4-gram language model and converted into a confusion
network [6] taking into account the pronunciation prob-
abilities. The words with the highest posterior in each
confusion set are hypothesized along with their posterior
probabilities. For the CTS data, the rst hypothesis is
also used to estimate VTLN warp factors for each con-
versation side [4].

The acoustic training data for the three systems (CTS
French, EPPS English, and EPPS Spanish) include re-
spectively 140h, 72h, and 79h of speech. The acoustic
models used in the last decoding pass of each system in-
clude about 10K tied states with about 32 Gaussians per
state. The respective vocabularies include 50K words,
60K words, and 65K words, with respectively 74k, 74k,
and 94k pronunciations. The language models include
23M 3-grams and 15M 4-grams for French CTS, 33M
3-grams and 24M 4-grams of English EPPS, and 22M 3-
grams and 45M 4-grams for Spanish EPPS.

During the last decoding step, a word lattice includ-
ing the phone segmentation for each word edge is gener-
ated for each test segment. The duration log-likelihood
as given in Equation 1 is then added to each edge log-
likelihood score assuming that the acoustic models and
the duration models are modeling independent variables.
Two additional parameters are used to optimize the com-
bination: a duration model weight to scale the word du-
ration likelihood, and an additive constant proportional
to the number of phones in the given word pronuncia-
tion. These two parameters have been optimized on the
development test set for each task, but they are in fact
pretty much task independent as basically the same re-
sults are obtained when the same values are used for the
three tasks. After adding the duration scores to the lattice,
the recognizer hypothesis is obtained by carrying out a
consensus decoding in the same way it is done without
the duration model.

An issue often raised about duration models is that
word duration depend on the speaker, or more speci -
cally, on the rate of speech. Therefore it may be desirable
to normalize the word and phone durations by the rate of
speech. This can be done by normalizing the overall av-
erage phone duration of data for each speaker in the train-
ing data and in the test data. Doing this normalization on
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Conditions DEV EVAL DEV+EVAL
2h 2h 4h

4-gram MAP 32.95 34.84 33.88
+ duration models 32.47 34.42 33.44
Consensus 32.03 33.77 32.90
+ duration models 31.61 33.32 32.45

Table 2: Word error rates on the French CTS development and
evaluation sets (28 conversation sides for each set, about 2h) us-
ing four rescoring con gurations: 4-gram MAP decoding, MAP
decoding with duration models, consensus decoding, and con-
sensus decoding with duration models.

the training data is easy since the phone durations can be
scaled after forced alignment with the manual transcrip-
tions. For the test data the lattice posterior probabilities
have been used to estimate the expected average duration
given the current best models.

5. EXPERIMENTAL RESULTS
In the experiments carried out on the French CTS data,

the best results were obtained using 2 Gaussians for the
word duration models and 4 Gaussians for the phone
models with a back-off threshold of 20 (the number of oc-
currences of the given word pronunciation in the training
data). The HMM and duration models were trained on all
the acoustic training data (140h) and the system parame-
ters were optimized on the 2h development data set. The
decoding parameters for the baseline system (i.e. without
a duration model) have been carefully optimized and give
word error rates of 32.0% and 33.8% respectively on the
development data and the evaluation test set with con-
sensus decoding as shown in the lower part of Table 2.
The use of duration models reduces the word error by
about 0.5% absolute on the evaluation data (from 33.8%
to 33.3%). The gain is less than the gain obtained by con-
sensus decoding compared to a standard MAP decoding
as shown in the upper part of the table. This illustrates
the interest of using a decoding scheme for the duration
models which is compatible with consensus decoding.

Experiments were also carried out after normalizing
the rate of speech in test and/or in the training data as
described in Section 4, but these experiments resulted in
no additional gain.

Results for the English and Spanish EPPS tasks are re-
ported in Table 3. The data used for these experiments
are the TC-Star Dev06 and Eval06 test sets. The Spanish
data sets are twice as large as the English ones as they also
include about 3h of the Spanish Parliament data in addi-
tion to the EPPS data. These results are similar to those
obtained on the French CTS data, but the error reductions
are smaller since the baseline results are signi cantly bet-
ter. It can also be seen that the duration models help the
Spanish system more than the English system.

6. CONCLUSIONS
In the paper experiments have been reported showing

that word and phone duration models can help reduce

English Spanish
Conditions DEV EVAL DEV EVAL

3.2h 3.2h 6.1h 7.0h
4-gram MAP 11.51 9.53 7.83 11.20
+ duration models 11.22 9.19 7.62 10.97
Consensus 10.84 9.05 7.55 10.85
+ duration models 10.71 8.86 7.39 10.61

Table 3: Word error rates on the English and Spanish EPPS
development and evaluation sets using four rescoring con gu-
rations: 4-gram MAP decoding, MAP decoding with duration
models, consensus decoding, and consensus decoding with du-
ration models.

the word error rate of carefully optimized state-of-the-art
LVCSR systems. The proposed approach is based on the
rescoring of word lattices including phone segmentations
for each word edge, thereby allowing the duration mod-
els to be compatible with a consensus network decoding
framework. Experimental results were given for a con-
versational telephone speech task in French and for the
TC-Star EPPS transcription task in Spanish and English.
A word error rate reduction of about 0.5% absolute is re-
ported for the CTS task, and smaller but consistent gains
are reported for the EPPS task.

REFERENCES
[1] M. Russell and R.K. Moore, “Explicit modelling of state

occupancy in hidden markov models for automatic speech
recognition,” Proc. of IEEE ICASSP’85, 5–8, June 1985.

[2] D Burshtein, “Robust parametric modeling of durations in
hidden markov models,” in Proc. IEEE ICASSP’95, De-
troit, I:548–551, May, 1995.

[3] J.-L. Gauvain and C.H. Lee. “Maximum a Posteriori Esti-
mation for Multivariate Gaussian Mixture Observations of
Markov Chains,” IEEE Trans. on Speech and Audio Pro-
cessing, 2(2):291–298, April 1994.

[4] J.-L. Gauvain, L. Lamel, H. Schwenk, G. Adda, L. Chen,
and F. Lefevre, “Conversational Telephone Speech Recog-
nition,” in Proc. IEEE ICASSP’03, Hong Kong, April
2003, I212–215.

[5] S.E. Levinson, “Continuously variable duration hidden
Markov models for automatic speech recognition,” Com-
puter Speech and Language, 1(1):29–45, 1986.

[6] L. Mangu, E. Brill, and A. Stolke, “Finding Consensus
Among Words: Lattice-Based Word Error Minimization,”
in ISCA Eurospeech, Budapest, Sept. 1999, 495-498.

[7] V.R.R. Gadde, “Modeling Word Duration,” Proc. 6th In-
ternational Conference on Spoken Language Processing
(ICSLP), 1:601-604, 2000.

[8] M.T. Johnson, “Capacity and Complexity of HMM Dura-
tion Modeling Techniques,” IEEE Signal Processing Let-
ters, Vol. 12, No. 5, May 2005.

[9] N. Ma and P. Green, “Context-Dependent Word Duration
Modelling for Robust Speech Recognition,” In Proc. In-
terspeech, Lisbon, 2609-2612, 2005.

[10] D. Povey, “Phone Duration Modeling for LVCSR,” In
Proc. ICASSP, 829-833 Montreal, 2004..

IV  644


