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ABSTRACT 

 

Recent developments in large vocabulary continuous speech 

recognition (LVCSR) have shown the effectiveness of 

discriminative training approaches, employing the following 

three representative techniques: discriminative Gaussian 

training using the minimum phone error (MPE) criterion, 

discriminately trained features estimated by multilayer 

perceptrons (MLPs); and discriminative feature transforms 

such as feature-level MPE (fMPE). Although MLP features, 

MPE models, and fMPE transforms have each been shown 

to improve recognition accuracy, no previous work has 

applied all three in a single LVCSR system. This paper uses 

a state-of-the-art Mandarin recognition system as a platform 

to study the interaction of all three techniques. Experiments 

in the broadcast news and broadcast conversation domains 

show that the contribution of each technique is 

nonredundant, and that the full combination yields the best 

performance and has good domain generalization.  

 

Index Terms— MLP, MPE, fMPE, Mandarin LVCSR 

 

1. INTRODUCTION 

 

In recent years, discriminative acoustic training techniques 

have led to significant accuracy improvements on many 

LVCSR tasks. Among these approaches, the following three 

categories of techniques have seen widespread use because 

of their proven effectiveness. 

Discriminatively trained models. This category includes 

model parameter estimation techniques based on maximum 

mutual information (MMI) [1,2], minimum phone error 

(MPE) [3], minimum classification error (MCE) [4], and 

other relevant criteria. Compared to traditional maximum 

likelihood (ML) training, discriminative training better 

addresses the model incorrectness problem, which is a clear 

theoretical limitation for the hidden Markov model (HMM)-

based recognition systems. So far in LVCSR, the MPE 

criterion has been the most widely used, because of its 

superior performance and generalization.    

Discriminatively trained features. State-of-the-art 

LVCSR systems are mostly based on phoneme units, and 

therefore rely on phone discrimination. However, commonly 

used LVCSR features, such as Mel frequency cepstral 

coefficients (MFCC) and perceptual linear prediction (PLP) 

coefficients, are not explicitly optimized for phone 

discrimination. One approach that has proven effective 

involved multilayer perceptrons (MLP)s estimating some 

form of posterior phone probabilities at the frame level, to 

be used as HMM observation features. This approach is 

known as Tandem acoustic modeling [5]. MLP features are 

then typically used in combination with regular features, 

such as MFCC and PLP, to obtain maximum benefit. The 

resulting combined feature typically has high dimensionality. 

Discriminatively trained transforms. The idea of these 

approaches is to use discriminative criteria to estimate linear 

feature transforms, which make corrections to standard 

features to improve discriminative power. Typical 

approaches include fMPE [6] and MPE-RDLT (region 

dependent linear transforms) [7]. Compared to MLP 

features, which are usually appended to regular features, 

these approaches modify the standard features themselves 

through transformation based on certain conditions.  

These three categories of discriminative training 

methods attack the speech modeling problem at different 

levels. Can they work together? Are their contributions 

nonredundant? In the remainder of the paper, we answer this 

question by applying MLP features, fMPE transforms, and 

MPE training to a large vocabulary Mandarin recognition 

task, and by studying how the methods interact. Section 2 

briefly introduces the Mandarin system used as the platform 

for this study. Section 3 reviews the three approaches, 

proposes a combined approach, and presents some 

comparative results using a simple recognition system. 

Section 4 shows experimental results on a full state-of-the-

art Mandarin  recognition system. Section 5 summarizes the 

paper. 
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2. THE MANDARIN LVCSR SYSTEM 

 

This section summarizes the Mandarin LVCSR system used 

as the test bed for this work.  

 Acoustic models were trained on 465 hours of speech, 

including LDC Mandarin Hub4, Mandarin TDT4 closed 

captions filtered by flexible alignment [13], and the data 

released in the first two quarters of the DARPA GALE 

program. Two sets of models were trained: one was a 

crossword triphone SAT (Speaker Adaptive Training) [14] 

normalized model based on MFCC+pitch front-end 42-

dimensional features, trained using fMPE and MPFE; the 

second model was similar except that it used 

MFCC+pitch+MLP 74-dimensional features without SAT 

normalization, and within-word triphones.  

The language model (LM) training corpora comprised 

946 million segmented words, including transcriptions of the 

acoustic training data, text corpora available under the 

GALE program, and 195M words of Web data. We used a 

unigram ML-based word segmentation algorithm to segment 

the training text into multi-character words. Two large 5-

gram LMs were developed for N-best rescoring: a pruned 

word 5-gram LM interpolated with two class-based 5-gram 

LMs, and an unpruned counts-based word 5-gram LM.  

The search structure of the system is depicted in Figure 1. 

The two acoustic models were each applied twice in four 

decoding passes in an interleaved way: after the first pass, 

the remaining three passes performed adapted decoding 

based on hypotheses generated from the previous pass. The 

last two passes also generated N-best lists, which were 

rescored by the 5-gram LMs mentioned earlier. A character-

level confusion network combination was then applied to the 

two sets of N-best lists to produce the final results. 

 

3.  COMBINED DISCRIMINATIVE MODELING 

 

We first review the three techniques we used in this study: 

MLP features, MPE models, and fMPE transforms. Then we 

propose the combined approach and compare results 

between different configurations. 

 

3.1 MLP features 

 

We built our system following the Tandem approach [5], 

i.e., features generated by the connectionist (MLP) system 

were used as HMM observation data. This approach 

produced significant word error rate reduction, about 10% 

relatively in an English Conversation Telephone Speech 

system [8], and was shown to generalize across domains and 

even languages, making it even more attractive [9]. 

We used two types of MLPs to generate features. A 

PLP/MLP, which focuses on medium-term information, was 

trained on 9 consecutive frames of PLP features, as well as 

their first and second order differences. Hidden activation 

temporal pattern-MLPs (HATs) [10, 11], which focuses on 

long-term information, extract information from 500 ms 

windows of critical band energies. Both PLP/MLP and 

HATs systems generated phone posteriors, which were 

combined using inverse-entropy weighting and then 

projected to 32-dimensional features via a Karhunen-Loeve 

transform. 

We appended the 32-d MLP features with the 39-d 

MFCC features and the 3-d pitch features (consisting of log 

pitch and its first and second differences) features to form a 

74-dimensional feature vector, which was then used to train 

the HMM system. 

 

3.2 MPE models 

 

MPE model training was first proposed in [3]. Gaussian 

parameters are estimated to optimize the following objective 

function: 

=

=
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           (1) 

where ),|( λrk OsP  is the posterior probability of hypothesis 

s for utterance r given observation Or, current parameter set 

, and acoustic scaling factor k.  RawPhoneAccuracy(s) is a 

measure of the number of correctly transcribed phones in 

hypothesis s. So the MPE objective function is the weighted 

average phone accuracy in the lattices generated by a 

LVCSR system. 

Optimization of the MPE criterion employs an adapted 

extended Baum-Welch algorithm, which was initially used 
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Figure 1:  Mandarin LVCSR system illustration. 
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for MMI training. MPE training aims to minimize phone 

error rates, which in turn leads to lower word error rates. 

MPE training is shown to produce more accurate models 

than MMI training, and also appears to have superior 

generalization from training to test data, compared with 

direct word error rate minimization (MWE) [3], and 

therefore has been adopted widely.  

 In this study, we used a variant of MPE training, 

optimizing the weighted average of frame-level phone 

accuracies of phone lattices generated from a fast decoding 

system [12]. We have shown that this approach, also known 

as MPFE, had comparable or better results than the standard 

MPE in English and Mandarin CTS system, when combined 

with a MMI model prior and I-smoothing [12]. 

 

3.3 fMPE transforms 

 

fMPE transforms were first proposed in [6]. The idea is to 

use a very large linear transform that projects a high-

dimensional feature vector into the standard feature space, as 

a correction to the original feature to optimize the MPE 

objective function of equation (1): 

ttt Mhxy +=        (2) 

where xt is the original feature vector at time t; ht is a high- 

dimensional feature vector;  M is the transform matrix that 

needs to be estimated, and yt is the corrected feature that has 

improved discriminative power according to the MPE 

criterion. fMPE optimization uses first-order gradient 

descent, with iterative transform estimation and ML model 

updates. It has been shown that subsequent MPE training 

after the fMPE transform is fixed can achieve additional 

word error rate reductions. 

Similar to [6], we constructed ht by computing Gaussian 

posteriors from evaluating a Gaussian mixture model 

(GMM), and with neighboring context expansion. The 

GMM used for this purpose had 102K Gaussians trained on 

MFCC+pitch features (42 dimensions). We also used a 

second layer of 3210 Gaussians clustered from the 102K 

Gaussians for fast computation.  

 

3.4. The combined approach 

 

Although both MLP features and fMPE transforms aim at 

improving the discriminative power of ASR input, they have 

very different implementations and internal principles, 

which leave room for effective combination. In this study, 

we used the 74-d MFCC+pitch+MLP features as input, a 

102K-dimensional posterior vector with context width 3, 

resulting in an fMPE transform M of size 74 x 306K. We 

typically ran 3-4 iterations of fMPE optimization. Then, with 

the fMPE transform fixed, we ran 4-5 iterations of MPFE 

model updates. Thus, the system would incorporate all three 

discriminative training approaches. 

To have a comparison with the combined approach, we 

also trained fMPE transforms without the MLP features (i.e., 

with the 42-d MFCC+pitch features only). In this setup, 

because of the lower input feature dimension, we increased 

the context width to 5 to have an fMPE transform of size 

closer to the previous one: 42 x 510K. After the fMPE 

transform was learned, we ran MPFE training. We also 

tested the other 6 possible combinations, such as the MLP 

features with MPFE training but no fMPE transforms, etc.  

Instead of running the full system shown in Figure 1, we 

ran the comparison with a speaker-independent (SI) single-

pass bigram decoder using acoustic models of within-word 

triphones without SAT. The training data was as described 

in Section 2. The acoustic model contained about 200K 

Gaussians.  The bigram was the highly pruned for fast 

decodingz. Testing was performed on the dev06bn test set, 

which consists of 3.5 hours of Mandarin broadcast news.  

 

As Table 1 shows, the contributions from the three 

discriminative training approaches were nonredundant, and 

the fully combined approach (S7) worked the best among all 

configurations. Compared to the baseline S0, which used 

none of the three discriminative training approaches, the 

CER reduction was quite significant: 4.0% absolute or 

23.3% relative. 

 

4. FULL SYSTEM RESULTS  

 

We tested the full Mandarin LVCSR system on three 

different test sets: eval04, which is the one-hour 2004 EARS 

broadcast news (BN) evaluation test set; dev06gale, which is 

the GALE portion (1.43 hours) of dev06bn; and dev05bc, 

which contains 2.7 hours of broadcast conversations (BC) 

with non-Mandarin speech. For comparison, we also ran a 

system that shared the same search structure but without 

using any of the discriminative training approaches, as the 

baseline. The CER results of these two configurations are 

compiled in Table 2.  

As Table 2 shows, in all cases the system with 

discriminative training preformed significantly better than 

the baseline system. Nevertheless, in the broadcast news 

domain, the improvement from discriminative training was 

considerably smaller compared to the results in Table 1. We   

Table 1:  CERs on dev06bn test set with 1-pass speaker-

independent bigram decoding. 

 

Sysid MLP MPFE fMPE WER Rel.  

S0    17.1% - 

S1 Yes   15.3% -10.5% 

S2  Yes  14.6% -14.6% 

S3   Yes 15.6% -8.8% 

S4 Yes Yes  13.4% -21.6% 

S5 Yes  Yes 14.7% -14.0% 

S6  Yes Yes 13.9% -18.7% 

S7 Yes Yes Yes 13.1% -23.3% 
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believe that this was mainly due to the strong language 

models employed in the full system, which were tuned on 

BN-typed text already. The reduced improvement could also 

come from the fact that adaptation might wash out some of 

the improvement. In broadcast conversations, we see a 

bigger improvement (20.5% relatively), similar to those in 

Table 1, probably because the language models were less 

well-matched to the test data, while the discriminative 

training approaches had good generalization across domains. 

 

 

5. CONCLUSIONS 

 

We have presented a discriminative training approach 

combining MLP features, fMPE transforms, and MPFE 

training. Experimental results showed that the contributions 

from these three individual approaches were nonredundant. 

Applying the combined approach in a state-of-the-art 

Mandarin LVCSR system led to significant character error 

rate reductions on three different test sets in different 

domains. The biggest improvement is in the broadcast 

conversations domain, which matched training data the least, 

demonstrating good cross-domain generalization of the 

proposed method. 
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Table 2: CERs of the full system on dev06gale, eval04 and 

dev06bc. 

 

 dev06gale eval04 dev05bc 

Baseline 6.1% 13.8% 28.3% 

Eval system 5.2% 12.2% 22.5% 

Rel.   (%) -14.7% -13.1% -20.5% 
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