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ABSTRACT

Speech communication is significantly more difficult in severe acous-
tic background noise environments, especially when low-rate speech
coders are used. Non-acoustic sensors, such as radar sensors, vi-
brometers, and bone-conduction microphones, offer significant po-
tential in these situations. We extend previous work on fixed wave-
form fusion from multiple sensors to an optimal dynamic waveform
fusion algorithm that minimizes both additive noise and signal dis-
tortion in the estimated speech signal. We show that a minimum
mean squared error (MMSE) waveform matching criterion results
in a generalized multichannel Wiener filter, and that this filter will
simultaneously perform waveform fusion, noise suppression, and
crosschannel noise cancellation. Formal intelligibility and quality
testing demonstrate significant improvement from this approach.

Index Terms— Non-acoustic sensor, waveform fusion

1. INTRODUCTION

Since speech coding in severe acoustic noise is very difficult, recent
work has explored the use of non-acoustic sensors to supplement the
acoustic microphone information [1, 2, 3]. In particular, waveform
fusion of non-acoustic sensors, combined with additional highband
speech encoding, produced significant intelligibility improvements
for the 2.4 kb/s NATO MELPe standard [3].

In this work, we have extended this earlier fixed waveform fu-
sion approach to a dynamic waveform fusion algorithm that com-
bines sensor fusion, noise suppression, and crosschannel noise can-
cellation into a single time-varying filter. This algorithm is an ex-
tension of the multichannel Wiener filtering approach to incorporate
both additive noise and signal distortion.

2. DYNAMIC WAVEFORM FUSION

We have developed a dynamic waveform fusion algorithm to com-
bine acoustic and non-acoustic sensors. This approach uses a MMSE
criterion for optimization, incorporating both additive noise and sig-
nal distortion.

2.1. Prelimaries: Review of Wiener Filter

To introduce our notation, as well as to provide a starting point for
further analysis, we begin with a review of the well-known Wiener
Filter.
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2.1.1. Single Channel

If we observe the noisy time signal y(t) = s(t) + n(t), where s(t)
and n(t) are the signal and additive noise, respectively, then in the
frequency domain we have Y (f) = S(f) + N(f). We wish to find
the optimal linear filter G(f) to estimate the signal from the noisy

observation, i.e. Ŝ(f) = G(f)Y (f). Dropping the frequency index
f for convenience and using the inner product notation 〈A,B〉 to
represent the expected value of A∗B and ‖A‖2 = 〈A,A〉, we can
write the mean-squared error as

E = ‖S − Ŝ‖2 = ‖S − GY ‖2.
By taking the derivative with respect to G, we get the MMSE solu-
tion:

Gopt =
〈S, Y 〉
‖Y ‖2

=
‖S‖2 + 〈S,N〉

‖S‖2 + ‖N‖2 + 〈S,N〉
Assuming the signal and noise to be independent gives the familiar
result:

Gopt =
‖S‖2

‖S‖2 + ‖N‖2 =
Ps

Ps + Pn
, (1)

where Ps and Pn represent the signal and noise power at frequency
f . In most applications, the noise is assumed to be stationary, so
that Pn can be estimated during silent periods. Ps can also be a
stationary signal power estimate, or it can be dynamically estimated
for each speech frame in which case the resulting Wiener filter will
be time-varying.

2.1.2. Multichannel Wiener Filter

For multiple acoustic microphones, the Wiener filter can be gener-
alized. Given two channels, Y1 and Y2, such that Y1 = S + N1

and Y2 = S + N2, the MMSE solution for waveform combination
Ŝ = G1Y1 + G2Y2 is achieved with coefficients defined by:»

G1

G2

–
=

» ‖Y1‖2 〈Y2, Y1〉
〈Y1, Y2〉 ‖Y2‖2

–−1 » 〈S, Y1〉
〈S, Y2〉

–

In vector notation, we have

G(f) = R−1yy (f)Rsy(f) (2)

with
Ŝ(f) = GT (f)Y(f). (3)

In the more general case, each actual observation Y o
i has passed

through a transfer functionHi:

Y o
i = HiYi = Hi(S + Ni).
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Each channel should then be equalized prior to Wiener filtering, us-
ing

Yi = H−1
i Y o

i .

Each transfer function represents the signal path to the sensor. In
our application, all sensors are mounted to the talker, so the trans-
fer functions should not vary over time. Therefore, the equalization
functionsH−1

i can be measured using a microphone calibration pro-
cess in the absence of background noise. If we use a high-quality
reference microphone to record the clean signal S (or simply use
the resident acoustic microphone as the true signal), then for each
sensor:

H−1
i =

〈S, Y o
i 〉

‖Y o
i ‖2 . (4)

In the absence of noise, this is an exact relationship. If a quiet cal-
ibration process is infeasible, or if the transfer functions may drift
with time, the equalization functions can be estimated from time in-
tervals where the speech is much louder than the background noise.
In all subsequent analysis, we will assume that this equalization has
been done prior to waveform fusion.

2.2. Signal Distortion

For nonacoustic sensors, additive noise is not the primary signal cor-
ruption. These transducers do not have full response to the speech
signal, especially at higher frequencies. As a result, the nonacous-
tic sensors of interest to us generate significant signal distortion af-
ter equalization, even in the absence of background noise. If we
model this distortion as a time-varying transfer function noise, then
we get both multiplicative and additive noise terms in the frequency
domain:

Yi(f) = [1 + Hdi(f)]Si(f) + Ni(f),

whereHdi represents the unknown component of the overall transfer
function. Note that if this tranfer function noise is independent of the
signal, we can also view this as

Yi(f) = Si(f) + Di(f) + Ni(f)

where Di(f) is an additive distortion with variance proportional to
the signal variance.
Like the transfer functions, this distortion power can be mea-

sured in a quiet signal calibration process, in this case based on the
coherence between the reference microphone and the sensor in ques-
tion. The signal coherence for channel i is given by:

ρi =
〈S, Yi〉p‖S‖2‖Yi‖2

. (5)

For the calibration process there is no background noise, so Yi =
S + Di, and the coherence ρi is only reduced by signal distortion:

ρi =
‖S‖2 + 〈S,Di〉p‖S‖2(‖S‖2 + ‖Di‖2 + 〈S,Di〉)

.

Assuming the signal and distortion to be uncorrelated (since any
component of distortion that is linearly related to the signal would
be incorporated in the equalization filter) leads to:

Pdi = Ps

„
1

ρ2i
− 1

«
(6)

where Pdi is the distortion power at this frequency. Note that for
high-quality sensors, such as close-talking acoustic microphones,
the calibration coherency should be equal to 1 so that the distortion
power will be zero.

2.3. Static Waveform Fusion

Our initial work with MMSE waveform fusion was to find the op-
timal static fusion coefficients for a given recording. To use the
Wiener filter in Eq. 2, we must estimate Ryy(f) and Rsy(f). We
make the following assumptions:

1. The signal, noise, and distortion are stationary.

2. The noise is independent of the signal.

3. The noises in different channels are independent.

4. The distortion is independent of the signal.

5. The distortions in different channels are independent.

6. The noise and distortion are independent.

Then all cross-terms vanish, leading to the following expressions (for
the two channel case):

Rsy =

»
Ps

Ps

–
(7)

and

Ryy =

»
Ps + Pn1 + Pd1 Ps

Ps Ps + Pn2 + Pd2

–
(8)

We have implemented a waveform fusion algorithm using this
approach. We estimate the necessary speech, noise, and distortion
parameters in each channel using a sequence of Discrete Fourier
Transforms (DFTs). First, the channels are equalized to the refer-
ence microphone using Eq. 4 from the quiet calibration recordings.
Then, the speech power for frequency f is estimated as the mean
power in the primary microphone at that frequency, the noise power
is estimated as the 20th percentile point of the total signal power at
frequency f in channel i, and the distortion power for f and i is
estimated using Eq. 6.
For sensor configurations similar to those in [3], this results in

comparable performance gain. The advantage of this approach is
that it automatically adjusts the tradeoff between additive noise and
signal distortion at each frequency based on the relative performance
of each sensor with the current noise environment and talker.

2.4. Dynamic Fusion

The assumption that the speech signal is stationary may be unneces-
sarily restrictive. A more general case is to replace the first assump-
tion from the previous section with the following:

• The noise is stationary and the signal-to-distortion ratio is
constant.

The resulting waveform fusion will be dynamic, since the coeffi-
cients will change from frame to frame. This does not require any
change to the filter estimation equations, simply that the speech power
is estimated based on each frame’s DFT. As in Wiener filter-based
noise suppression algorithms, this speech power can be estimated by

Ps = Py − Pn

from the primary acoustic microphone.
Unfortunately, initial experiments with this straightforward ap-

proach show that it results in an annoying tonal background noises,
similar to the well-known “musical noise” generated by noise sup-
pression algorithms. Experimental analysis shows that the time-
varying Wiener filter is indeed acting like a noise suppression al-
gorithm, since the sum of the fusion coefficients is often much less
than one.
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2.4.1. Disabling Noise Suppression

One approach to eliminating the musical noise is to constrain the fu-
sion algorithm not to attenuate the signal. This can be done using
a Lagrangian technique, with a constraint on the sum of the coeffi-
cents:

E = ‖S − Ŝ‖2 + 2λ‖S‖2
˛̨̨
˛̨1 −

X
i

Gc
i

˛̨̨
˛̨

This leads to the partial solution for the optimal constrained coeffi-
cients:

Gc(f) = (1 − λ(f))R−1yy (f)Rsy(f)

Imposing the constraint:

1 = 1TGc(f) = (1 − λ(f))1TR−1yy (f)Rsy(f)

Defining the sum of the unconstrained Wiener filter coefficients as

Gsum(f) = 1TR−1yy (f)Rsy(f),

we can solve for λ

(1 − λ(f))Gsum(f) = 1

λ(f) =
Gsum(f) − 1

Gsum(f)

so that

Gc(f) =
1

Gsum(f)
G(f) (9)

where G(f) is given by Eq. 2. This result is intuitively satisfying:
the optimal gain-constrained filter is the optimal unconstrained filter
divided by the sum of the unconstrained coefficents.
In informal evaluations, this constrained waveform fusion ap-

proach does remove the musical noise distortion. Unfortunately, this
also reduces the amount of noise reduction. While it is possible to
run a separate noise suppression algorithm on the waveform fusion
output, it would be more satisfying to improve the unconstrained fu-
sion algorithm to retain the noise suppression functionality without
introducing tonal artifacts.

2.4.2. Robust Signal Power Estimation

Our efforts to increase the robustness of the algorithm have focussed
on the estimation of the signal power Ps. In noise suppression al-
gorithms, it is well-known that the musical noise phenomenon is
related to measurement fluctuations in the instantaneous estimation
of the signal power, and that this can be addressed by smoothing the
estimates either across frequency [4] or time [5]. We generalize this
concept to our multichannel waveform fusion algorithm.
We have developed a three-stage approach to robust signal power

estimation. The first estimate uses only the resident acoustic micro-

phone: P
(1)
s = Py − Pn. With this initial estimate of Ps, we apply

gain-constrained waveform fusion to produce a second, multichan-
nel estimate of the signal power. Since

Ŝ =
X
i

Gc
iYi = S

X
i

Gc
i +

X
i

Gc
iNi = S +

X
i

Gc
iNi,

then
S =

X
i

Gc
i (Yi − Ni),

Therefore, our second estimate of Ps is given by

P (2)
s (f) = (Gc)T (f)(Ryy −Rnn)G

c(f).

Finally, we incorporate time smoothing using the decision-directed
a priori estimator of Ephraim and Malah, where the current frame
signal power is smoothed with the previous filter output [6, 5]:

P (3)
s = (1 − α)P (2)

s (f) + α|Ŝprev|2

where Ŝprev(f) is the waveform fusion output from the previous

frame and α is a smoothing parameter (typically 0.98). Using P
(3)
s

in Eq. 7, 8, and 2 results in a waveform fusion with strong noise
suppression but minimal noise artifacts and signal distortion.

2.4.3. Cross-channel Noise Cancellation

Typically, with spatially-diverse noise sources and sensors, the noise
is essentially independent across channels. However, in special cases,
such as when two acoustic sensors are deliberately positioned close
to each other, there may be coherency between the noise compo-
nents in these sensors. In these scenarious, our third assumption in
Sec. 2.3 is not reasonable. Estimating a full noise covariance matrix,
rather than assuming non-diagonal terms to be zero, results in the
following:

Ryy =

»
Ps + Pn1 + Pd1 Ps + 〈N2, N1〉
Ps + 〈N1, N2〉 Ps + Pn2 + Pd2

–
(10)

As in the simpler prior noise estimation algorithm, these noise cross-
terms can be estimated during silent periods.
With this approach, the waveform fusion algorithm implements

an additional noise cancellation functionality by exploiting noise co-
herency across channels to remove noise components. Note that this
also results in complex fusion coefficients G(f), which are purely
real for all prior examples.

3. PERFORMANCE EVALUATION

We have tested this dynamic waveform fusion algorithm with a set
of six sensor signals. These sensors are a dual channel close-talking
noise cancelling microphone from Aliph Corporation, two channels
of a second-generation microwave radar sensor mounted on the throat
(also from Aliph), a piezo-electric vibrometer also on the throat (P-
mic), and a bone conduction microphone located on the top of the
skull (bone-mic). For comparison, a typical resident microphone
(Gentex M175A) was also available.

3.1. Testing With Lombard Speech in Noise

For initial testing of the dynamic waveform fusion algorithm, we
digitally mixed clean multichannel recordings with separate multi-
channel noise recordings. The clean speech signal was produced
with an induced Lombard effect to better simulate speech in noise.
This testing method allows us to compare the clean speech input,
noisy mixed signals, and fusion output. Each signal was coded with
the 2.4 kb/s NATO MELPe coder [7], and the ITU PESQ objective
measure was used for evaluation. The test involved a total of 12
files, each 20 seconds long, from six speakers in two noise fields:
Blackhawk helicopter and Bradley fighting vehicle. These results
are shown in Table 1. The baseline system has a predicted MOS of
2.63. Microphone equalization and noise suppression, achieved by
running the dynamic waveform fusion software with only the resi-
dent microphone as input, results in a small improvement in perfor-
mance. Static waveform fusion using all six sensors provides more
improvement, but the dynamic fusion performs best. This system
approaches but does not fully achieve the performance of MELPe
with the clean reference microphone input.
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Method Score

Resident mic. 2.63
Resident equalized 2.68
Static fusion 2.77
Dynamic fusion 3.01
Clean ref. mic. 3.25

Table 1. PESQ scores of waveform fusion algorithms with 2.4 kb/s
MELPe coding.

Method DRT

Resident equalized 86.5
Dynamic fusion 91.9

Table 2. Intelligibility comparison of dynamic waveform fusion vs.
equalized resident microphone signal with 6 kHz bandwidth unquan-
tized MELP coding in Blackhawk environment.

3.2. Formal Testing

We also compared the six-sensor dynamic waveform fusion against
the resident microphone in a Diagnostic Rhyme Test (DRT).We used
six talkers in the Blackhawk helicopter environment, with the fu-
sion outputs encoded by an unquantized MELP system using 6 kHz
bandwidth. These results, shown in Table 2, also show significant
performance improvement from the fusion system as compared to
the equalized resident microphone.

Finally, we performed a quality evaluation using an A/B test be-
tween the equalized resident microphone and the dynamic fusion al-
gorithm. Again, both signals were encoded by a 6 kHz unquantized
MELP system, and the Blackhawk helicopter environment was used.
Preference scores, averaged over 8 speakers, are shown in Table 3.
This improvement is statistically significant with a 95% confidence
interval.

4. CONCLUSION

By incorporating a multiplicative noise model into a multichannel
Wiener filtering approach, we have shown that non-acoustic signals
can be optimally exploiting using a MMSE criterion. This approach
results in automated static waveform fusion that is appropriate for
a particular talker and environment. For dynamic fusion, we have
developed an additional algorithm for estimating the instantaneous
SNR. Formal testing results show that the resulting dynamic wave-
form fusion algorithm provides significant intelligibility and quality
improvement for low-rate coding in difficult acoustic environments.

Method Preference

Resident equalized 37%
Dynamic fusion 63%

Table 3. Quality comparison of dynamic waveform fusion vs. equal-
ized resident microphone signal with 6 kHz bandwidth unquantized
MELP coding in Blackhawk environment.
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