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ABSTRACT
In this paper, frequency domain multi-channel ltering schemes are
proposed for speech enhancement, based on the subspace decom-
position of spatial spectral matrices. For better estimation of noise
statistics, which is important for most speech enhancers, we propose
noise eigenvalue modi cation methods for the correction of noise
spatial spectral matrix. These methods are based on the rank-1 prop-
erty of the speech spatial spectral matrix for single desired speech
source. Simulation results show that the proposed methods yield bet-
ter performance compared to the conventional multi-channel Wiener
ltering.

Index Terms— Microphone array, multi-channel ltering, speech
enhancement

1. INTRODUCTION

Noise reduction is one of the most important elements in speech
communication and recognition systems. Particularly in the case of
distant or hands-free speech acquisition, the system performance is
severely degraded due to ambient noises. Hence, there have been
many researches on noise suppression, and diverse techniques for
a single or multiple microphones have been developed for several
decades. In multi-microphone system, noise signals can be reduced
by beamforming techniques when the speech and noise signals ar-
rive from different directions. Beamforming based spatial ltering
techniques yield more noise reduction and less distortortion com-
pared to single microphone techniques. Recently, the multi-channel
Wiener ltering has been developed, which is shown to have better
performance than the standard beamforming techniques [1–3].

The estimate of noise statistics is essential in the multi-channel
Wiener lter as in most noise reduction lters. The second-order
statistics of the noise signal can be estimated from the observed data
during noise-only period and also used in subsequent speech-present
period under the assumption that the second-order statistics of noise
is slowly time varying compared to the speech signal [2,3]. However
this assumption results in large amount of errors in the case of highly
non-stationary noise such as a competing speech noise. For improv-
ing the performance of multi-channel noise reduction, we propose
three methods that estimate the noise statistics in speech-present pe-
riod by correcting the noise statistics estimated from noise-only pe-
riod. These methods are based on the rank-1 property of the speech
spatial spectral matrix for single desired speech signal. In summary,
the overall ltering scheme is to perform multi-channel Wiener l-
tering in the frequency domain by decomposing the spatial spectral
matrices, where the decomposed noise eigenvalues are modi ed.

This paper is organized as follows. Section 2 describes the sig-
nal model and brie y reviews the frequency domain multi-channel

Wiener ltering for noise reduction. We propose three methods for
correcting the noise spatial spectral matrix by modifying the noise
eigenvalues in Section 3. Simulation results and performance evalu-
ation are shown in Section 4.

2. FREQUENCY DOMAIN MULTI-CHANNELWIENER
FILTERING

Let us consider anM -channel signal model where a speech source is
convolved withM room acoustic transfer functions to every micro-
phone, and each microphone signal is corrupted by additive noise.
Then, the signal model can be expressed as

yi[k] = hi[k] ∗ s[k] + ni[k] = xi[k] + ni[k] i = 1, . . . , M (1)

where yi[k] denotes the observed signal at the ith microphone at
time k, xi[k] and ni[k] are speech and additive noise component re-
spectively, s[k] is the desired speech source, and hi[k] is the acous-
tic transfer function from the speech source to the ith microphone.
Assuming in nite lter lengths, (1) is represented in the frequency
domain as

Y(f) =

⎡
⎢⎢⎢⎣

Y1(f)
Y2(f)
...

YM (f)

⎤
⎥⎥⎥⎦ = S(f)

⎡
⎢⎢⎢⎣

H1(f)
H2(f)
...

HM (f)

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

N1(f)
N2(f)
...

NM (f)

⎤
⎥⎥⎥⎦

= S(f)H(f) + N(f) = X(f) + N(f) (2)

where Yi(f), Hi(f), S(f), Ni(f), Xi(f) are frequency domain
representations of yi[k], hi[k], s[k], ni[k], xi[k], respectively. For
the multi-channel lterW(f), the output signal Z(f) can be written
as

Z(f) = WH(f)Y(f). (3)
If we estimate the speech component from the 1st microphone signal
in the minimummean square error (MMSE) sense, the frequency do-
main multi-channel Wiener lter can be expressed in terms of spatial
spectral matrices as

W(f) = R−1
YY(f)RXX(f)e1

= R−1
YY(f) (RYY(f) − RNN(f)) e1 (4)

RYY(f) = E
{
Y(f)YH(f)

}
(5)

RXX(f) = E
{
X(f)XH(f)

}
(6)

RNN(f) = E
{
N(f)NH(f)

}
(7)
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with e1 =
[

1 0 · · · 0
]T . For the practical implementation,

the speech spatial spectral matrixRXX(f) is approximated as

RXX(f) � RYY(f) − RNN(f) (8)

under the statistical independence assumption between speech and
noise. In conventional algorithms, the noise spatial spectral matrix
RNN(f) is estimated and updated during noise-only period. The
update stops at speech-present period, and the most recent noise es-
timate is used until the next noise-only period. This scheme is based
on the assumption that the noise is stationary or slowly time varying.

3. SUBSPACE BASED MULTI-CHANNELWIENER
FILTERING IN THE FREQUENCY DOMAIN

3.1. Spatial Subspace Decomposition

The spatial subspace is obtained by subspace decomposition of multi-
channel input in frequency domain. The spatial spectral matrices
RYY(f) and RNN(f) can be jointly diagonalized by solving the
generalized eigenvalue problem [4] as

RYY(f)Q(f) = RNN(f)Q(f)Λ(f), (9){
Q(f)HRYY(f)Q(f) = ΛY(f)
Q(f)HRNN(f)Q(f) = ΛN(f)

(10)

where Λ(f),ΛY(f),ΛN(f) are diagonal matrices as

Λ(f) = diag {λ1(f) λ2(f) · · · λM (f)} (11)
ΛY(f) = diag {λY,1(f) λY,2(f) · · · λY,M (f)} (12)
ΛN(f) = diag {λN,1(f) λN,2(f) · · · λN,M (f)} (13)

withΛ(f) = ΛY(f)Λ−1
N (f), λi(f) =

λY,i(f)

λN,i(f)
, λ1(f) > λ2(f) >

· · · > λM (f) andQ(f) is an invertible, but not necessarily orthog-
onal matrix. Then the spatial spectral matrices are expressed as{

RYY(f) = Q̄(f)ΛY(f)Q̄H(f)
RNN(f) = Q̄(f)ΛN(f)Q̄H(f)

(14)

with Q̄(f) = Q−H(f). By substituting (14) into (4) the frequency
domain multi-channel Wiener lter is obtained as

W(f) = Q(f)
(
I − Λ−1

Y (f)ΛN(f)
)
Q̄H(f)e1. (15)

3.2. Noise Eigenvalue Modi cation

We propose several methods for the modi cation of noise eigen-
values, based on the inherent rank-1 property of the speech spatial
spectral matrix for single desired speech source, which can alleviate
the performance degradation resulting from the error of noise spa-
tial spectral matrix estimate. In principle, when the multi-channel
speech components are generated by multiplication of each acoustic
transfer function and a single speech source in the frequency domain
as in (2), the speech spatial spectral matrix can be written as

RXX(f) = E
{
X(f)XH(f)

}
= E {S(f)S∗(f)}HH(f)H(f)

(16)
and the rank of speech spatial spectral matrixRXX(f) is equal to 1.
From (8) and (14), the estimate of the speech spatial spectral matrix
is rewritten as

RXX(f) � Q̄(f) (ΛY(f) − ΛN(f)) Q̄H(f). (17)

Since Q̄(f) is a full rank matrix, the rank of (ΛY(f) − ΛN(f))
should be equal to 1 in order to make the speech estimate matrix
to be of rank-1. However, the rank of (ΛY(f) − ΛN(f)) deviates
from 1 due to the error in noise spatial spectral matrix estimate es-
pecially when the noise spatial spectral matrix is estimated during
noise-only period and kept unchanged in speech-present period. As
stated previously, the main purpose of this paper is to propose meth-
ods that updates noise spatial spectral matrix in the frequency do-
main, even in the speech-present period. To be precise, let R̃NN(f)

and Λ̃N(f) be the noise spatial spectral matrix and the noise eigen-
value matrix estimated during the noise-only period. Also, let us de-
note the modi ed noise eigenvalue matrix and the modi ed speech
spatial spectral matrix as Λ̂N(f) and R̂XX(f), respectively. Three
different approaches are proposed in this paper:

3.2.1. Least Squares Estimate (Method 1)

The rst method is to nd the least square estimate, i.e., to nd
Λ̂N(f) from

min
rank{R̂XX(f)}=1

∥∥∥ΛY(f)Λ̃−1
N (f) − ΛY(f)Λ̂−1

N (f)
∥∥∥2

F
. (18)

Then the least squares estimate is described as

Method 1:

Λ̂N(f) = diag
{

λ̃N,1(f) λY,2(f) λY,3(f) · · · λY,M (f)
}

.

(19)
This estimate retains the signal spatial subspace with the largest sig-
nal to noise ratio and removes the other noise spatial subspace. In
this case we get the frequency domain multi-channel Wiener lter
derived in [5] as

W(f) = q1(f)

(
1 − 1

λ1(f)

)
q̄H

1 (f)e1 (20)

where q1(f) and q̄1(f) are respectively the column of Q(f) and
Q̄(f) corresponding to the largest generalized eigenvalue λ1(f).

3.2.2. Time Invariant Spatial Coherence (Method 2 and 3)

The other two methods are derived from the time invariant spatial
coherence assumption. If we assume a homogeneous noise eld,
i.e., PNiNi(f) = PN (f), ∀i = 1, · · · , M with PN (f) the power
spectral density of noise and PNiNj (f) = E

{
Ni(f)N∗

j (f)
}
, the

noise spatial spectral matrix can be expressed in terms of the spatial
coherence matrix as

RNN(f) = PN (f)ΓN(f) (21)

with spatial coherence matrix

ΓN(f) =

⎡
⎢⎢⎢⎣

1 ΓN1N2(f) · · · ΓN1NM (f)
ΓN2N1(f) 1 · · · ΓN2NM (f)

...
...

. . .
...

ΓNM N1(f) ΓNM N2(f) · · · 1

⎤
⎥⎥⎥⎦ .

(22)
The elements of the spatial coherence matrix are the complex coher-
ence functions between two microphone signals as

ΓNiNj (f) =
PNiNj (f)√

PNiNi(f)PNjNj (f)
. (23)
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The spatial coherence matrix depends mainly on the microphone ar-
ray con guration, the position of sound source, and the acoustic en-
vironment, not the spectral characteristics of signal. Generally the
spatial coherence matrix is slowly time varying compared to spec-
tral characteristics. Therefore it is more realistic to assume that the
spatial coherence matrix is short-term stationary than to assume that
noise spatial spectral matrix is short-term stationary. Thus, let us
assume that the noise spatial coherence matrix ΓN(f) is short-term
stationary and let the noise spatial spectral matrix during speech-
present period as

R̃NN(f) = P̃N (f)ΓN(f) (24)

where P̃N (f) is the power spectral densigy of noise during noise-
only period. Then the noise spatial spectral matrix and noise eigen-
value matrix can be written as

RNN(f) = α(f)R̃NN(f) (25)

ΛN(f) = α(f)Λ̃N(f) (26)

with α(f) = PN (f)/P̃N (f).
From (8),(14), and (26), the estimate of the speech matrix is

rewritten as

RXX(f) � Q̄(f)
(
ΛY(f) − α(f)Λ̃N(f)

)
Q̄H(f) (27)

with λ̂N,i(f) = α(f)λ̃N,i(f). If the rank of speech spatial spectral
matrix is one, the whole power of speech signal lies in the speech
spatial subspace which is the column vector of Q̄(f) correspond-
ing to the largest generalized eigenvalue. Since there is no speech
power in the noise subspace, the generalized eigenvalues (λi(f), i =
2, · · · , M : the ratio of the speech+noise eigenvalue to the noise
eigenvalue) in the noise subspace are equal to 1. In practice, the
noise subspace generalized eigenvalues deviate from 1 and we can
estimate α(f) by reducing this deviation in the least squares sense
as

min

[
M∑

i=2

(
λY,i(f)

α(f)λ̃N,i(f)
− 1

)2
]

. (28)

Then the noise eigenvalue modi cation is obtained as

Method 2:

Λ̂N(f) = diag
{

α(f)λ̃N,1(f) λY,2(f) λY,3(f) · · · λY,M (f)
}
(29)

α(f) =

M∑
i=2

(
λY,i(f)

λ̃N,i(f)

)2

M∑
i=2

λY,i(f)

λ̃N,i(f)

(30)

where 2nd ∼ M th noise eigenvalues are set to the signal eigenval-
ues to make the speech spatial spectral matrix rank one. Another
estimate of noise modi cation factor α(f) is obtained by setting the
second largest generalized eigenvalue to one as

Method 3:

λY,2(f)

λ̂N,2(f)
= 1 → α(f) =

λY,2(f)

λ̃N,2(f)
. (31)

The second largest generalized eigenvalue is the largest power ratio
of signal to noise component in the noise spatial subspace, and (31)
removes the speech component in all the noise subspace, which tends
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Fig. 1. Filter gains in the signal subspace: competing speech noise.

to overestimate the noise power. The proposed three methods can be
represented in a uni ed notation as

Λ̂N(f) = diag
{

α(f)λ̃N,1(f) λY y,2(f) λY,3(f) · · · λY,M (f)
}

α(f) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 : Method1

M∑
i=2

(
λY,i(f)

λ̃N,i(f)

)2

M∑
i=2

λY,i(f)

λ̃N,i(f)

: Method2

λY,2(f)

λ̃N,2(f)
: Method3.

(32)
and the lter vector W(f) can be written with the principal eigen-
vector and the principal spatial subspace lter gain G(f) as

W(f) = q1(f)G(f)q̄∗1(f) (33)

G(f) = 1 − α(f)λ̃N,1(f)

λY,1(f)
(34)

where q̄∗1(f) is the complex conjugate of the rst element of q̄1(f).

4. SIMULATION RESULTS

4.1. Simulation data

In the simulations, we generate multi-channel noisy signals by adding
noise to the speech. The reverberant multi-channel signals are gen-
erated by the convolution of dry source (sound data measured in an
anechoic room) with acoustic impulse responses from the RWCP
Sound Scene Database [6]. The impulse responses are measured at
several positions which are 2m distance from the microphone array
with reverberation time of 300 ms. The microphone array is a lin-
ear type and has 7 transducers located at 2.83cm uniform intervals.
In this simulation, speech signal is convolved with the impulse re-
sponse measured at the fore side of the microphone array and added
by a competing speech noise signal coming at the angle of 40◦.
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Fig. 2. Spectral distortion as a function of input SNR : competing
speech noise.

4.2. Performance Evaluation

The principal spatial subspace lter gains are plotted as a function
of input SNR in Fig. 1 for a competing speech noise at 1000Hz. The
gains of method 3 are the lowest due to the noise overestimation.
The performance is evaluated by the measure of spectral distortion in
Fig. 2. The proposed spatial subspace based methods are compared
with the conventional frequency domain multi-channel Wiener lter
(MWF). The best performance is obtained by the noise eigenvalue
modi cation method (method 3) which removes the speech power in
all the noise subspace for the competing speech noise environments.
The signal waveforms are described in Fig. 3 for the case of 0dB
input SNR.

5. CONCLUSIONS

We have proposed frequency domain multi-channel ltering schemes,
which is based on the decomposition of spatial subspace matrices,
with the noise eigenvalue modi cation. In the previous multi-channel
Wiener ltering techniques, the noise statistics are estimated dur-
ing noise-only period and used in subsequent speech-present period,
which introduces considerable estimation error and performance degra-
dation especially when the noise is highly nonstationary. We have
developed several methods that modify noise eigenvalue matrix in
the speech-present period using the rank-1 property of the speech
spatial spectral matrix which attempts to correct the noise spatial
spectral matrix. The rst method is to nd least square estimate
and the other two methods are based on the time invariant spatial
coherence property. Proposed methods are evaluated with the objec-
tive measure of spectral distortion, and the simulation result demon-
strates that the best performance is obtained by the noise eigenvalue
modi cation method (method 3) which removes the speech power in
all the noise subspace.
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Fig. 3. Signal waveforms. (a) Clean signal. (b) Corrupted by com-
peting speech noise with 0dB input SNR. (c) Enhanced signal by
conventional multi-channel Wiener lter. (d) Enhanced signal by
proposed method 3.
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