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ABSTRACT
This paper proposes a novel MAP denoising algorithm

that uses the ICA transformation and provide a derivation
demonstrating the type of situations in which the use of
ICA transformation is expected to achieve best results. We
also propose an employment of Generalized Gaussian Model
(GGM) for modelling the speech and noise distributions. The
performance of the proposed speech enhancement algorithm
is compared with the Wiener ltering and sparse code shrink-
age method. The experiments are focused on speech signal
corrupted by a non-Gaussian noise. The experimental results
show that the proposed algorithm achieves signi cantly bet-
ter performance than both the Wiener ltering and the sparse
code shrinkage method.

Index Terms— Speech enhancement, independent com-
ponent analysis, maximum a-posteriori estimation, general-
ized Gaussian model, non-Gaussian noise

1. INTRODUCTION

Speech enhancement algorithms aim at improving the
quality of noise-corrupted speech signals by removing the
corrupting noise. This has attracted a great deal of attention
over past several decades.

A traditional method to enhance speech signal degraded
by an additive stationary noise is spectral subtraction [1]. The
Wiener ltering, assuming both the speech and noise sig-
nals to have Gaussian distribution, has widely been used for
speech enhancement, e.g., [2]. In recent studies, the use of
MAP algorithm has been proposed, e.g., [3] [4] [5]. The es-
timation is usually carried out in a linear transformation do-
main. The use of various transform-domains has been investi-
gated, for instance, the KLT (PCA) [3], wavelet transform [4],
or ICA transform [5]. It has also been reported that a non-
Gaussian modelling of speech signals may result in a better
performance. The use of Laplace distribution was proposed
in [3] [4], while authors in [5] used two super Gaussian distri-
bution models. Several open topics that need further investi-
gation include: nding an ef cient linear transformation for a
speci c noisy conditions, dealing with a non-Gaussian noise
corruption, and a more exible distribution modelling.

In this paper, we attempt to address some of the above
questions. We propose a novel MAP denoising algorithm
that uses the ICA transformation and provide a derivation
that demonstrates the type of situations (i.e. speech/noise be-
ing Gaussian/non-Gaussian) in which the use of ICA trans-
formation is expected to achieve best results. We also pro-
pose an employment of Generalized Gaussian Model (GGM),
originally introduced in [6], as a exible model for mod-
elling a wide class of non-Gaussian distributions. The per-
formance of the proposed speech enhancement algorithm is
compared with the Wiener ltering and sparse code shrinkage
method. In our experiments, we focus on speech corrupted by
a non-Gaussian noise. The experimental results show that the
proposed algorithm achieves signi cantly better performance
than both the Wiener ltering and the sparse code shrinkage
method.

The paper is organised as follows. The MAP algorithm
based on the ICA is presented in Section 2. The denoising
capability analysis of the proposed algorithm is discussed in
Section 3. The GGM model and the related parameter estima-
tion is introduced in Section 4. Section 5 presents simulation
results and conclusions are given in Section 6.

2. MAXIMUM A POSTERIORI ESTIMATION

We consider scalar random variables. Denote by x the
original speech signal, and by v some additive noise. As-
sume that we have observed the random variable y which is
the noisy version of signal x, i.e.,

y = x + v (1)

Our task is to estimate x from the observed noisy signal y by
means of x̂ = g(y) . This estimation problem may be solved
by using the MAP algorithm.

Let us denote an N -dimensional vector of samples of
noisy speech signal y(t) at time t by y(t) = [y(t), · · · , y(t −
N + 1)]T , where (.)T denotes the transpose operation.
The entire noisy signal gives a set of N -dimensional ob-
servation vectors {y(1), · · · ,y(T )}. Corresponding nota-
tion for clean speech signal. The MAP-based estimation of
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{x̂(1), · · · , x̂(T )} for large T → ∞ can be obtained by

{x̂(1), · · · , x̂(T )}
= arg max

x

∑
t

(ln pv(y(t) − x(t)) + ln px(x(t)))

⇔ arg max
x

(E{ln pv(y(t) − x(t))} + E{ln px(x(t))})
(2)

Our analysis considers a linear transformation framework.
For convenience, the time index t will be omitted in the fol-
lowing derivations. It has been shown in [7] that the max-
imization in Eq. 2 can be achieved by using ICA-based in-
dependent components. To derive our result, we will use
the relationship between the density of a random variable a
and its linearly transformed version b = Wa, i.e. pa(a) =
pb(Wa)|det(W )|, where det denote determinant of matrix.

Considering estimation of a single frame, the expectation
operator can be removed, and then the ICA-based MAP algo-
rithm becomes in the form of

x̂ ← arg max
x

(ln p(W v(y − x)) + ln p(W xx)

+ ln |det(W x)||det(W v)|) (3)

where W v and W x are ICA matrices of noise and clean signal
respectively. In the ICA framework, these matrices depend
only on the given noise and clean signal, and thus can be con-
sidered as constant. Let us denote the right term of Eq. 3 by
L. The nth sample estimate of the signal, x̂n, can be updated
by using gradient method

xn ← xn + λ
∂L

∂xn

= xn + λ

N∑
k=1

[−f ′
v(W v

k·(y − x))wv
kn + f ′

x(W x
k·x)wx

kn]

(4)

where λ is the step size, f = ln p, f ′ is the partial derivative
of f with respect to x and wkn = W (k, n), Wk· = W (k, :).

Assuming the noise is Gaussian, it can be shown that the
Eq. 3 can lead to the best linear estimator, i.e. Wiener lter,
or sparse code shrinkage method.

3. DENOISING CAPABILITY ANALYSIS

In this section, we analyse the denoising capability of the
MAP estimation given by Eq. 2 for different types of random
variables. In Bayesian estimation, the estimators of some
variables are achieved by minimizing a conditional risk R
which is given by a cost function C(x̂,x) of estimating the
true value of x as x̂:

Rx(x̂) = E{C(x̂,x)} =
∫ ∞

−∞

∫ ∞

−∞
C(x̂,x)p(x,y)dxdy

=
∫ ∞

−∞
[
∫ ∞

−∞
C(x̂,x)p(x|y)dx]p(y)dy (5)

where y is the observed data and x is the true value of data
hidden in y.

Often we do not know the a priori probability density of
an observation y and we simply assign it to be a uniform dis-
tribution in our following derivation. As the Bayesian risk is
always positive, thus the minimization of Rx(x̂) is obtained
by selecting x̂ with which for the given y the term in bracket
in Eq. 5 is minimum. Several forms of cost function can be
chosen, which all depend on the problem to be solved. Sup-
pose that in a given estimation problem we are not able to as-
sign a particular cost function C(x̂,x), then a natural choice
is a uniform cost function equal to 0 between some certain
small values ±ε/2 and uniform value outside that. Then by
Bayes theorem the risk function Rx(x̂) can be expressed by
the posteriori probability as

Rx(x̂) = E{1
ε
− p(x̂|y)} = E{1

ε
− p(y|x̂)p(x̂)

p(y)
} (6)

where p(y) can be treated as a uniform probability distribu-
tion, i.e. p(y) = 1/T . This equation shows that the minimum
of Rx(x̂) equals to the maximization of E{p(y|x̂)p(x̂)}.
Without affecting the convergence point, we consider the pdf
to be compressed by a logarithm function. Without causing
any confusion, we just use x to replace the estimator x̂ in our
following derivation.

As we discussed in Section 2, the maximization of log
likelihood can be solved within ICA framework. For the term
E{ln p(x)}, some simple manipulations [8] yields

E{ln p(x)} = −H(x) − KL(s ‖ a) (7)

where KL(· ‖ ·) and H(·) denote Kullback-Leibler diver-
gence and entropy respectively. The a is the linear trans-
formation of x and s is the independent sources of vector x,
which can be modelled as

x = As (8)

where A is the invertible mixing matrix. H(x) is the entropy
of the true distribution of x, i.e. the entropy of vector As. By
the linear transformation of entropy given in [9], we have

H(x) = H(s) + ln |det(A)| (9)

In ICA blind framework, the value of ln |det(A)| is equal
to − ln |det(U)|, where U is whitening matrix of x. As it
has been shown in [10], the maximum log likelihood can be
achieved by the minimization of KL(s ‖ a), which would
result in zero, as the KL divergence is being non-negative. As
such the maximum log likelihood of p(x) will be

E{ln p(x)}max = −H(s) + ln |det(U)| (10)

The same analysis as above can also be applied for the term
E{ln pv(y − x)}, yielding a similar expression as in Eq. 10.
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Let us denote the independent components of noise and
original clean signal by sv and sx, respectively, and the
whitening matrix of noise and original clean signal by Uv

and Ux, respectively. To evaluate the denoising capability of
the proposed algorithm for signals/noises of various statistical
properties, the variance of each given signal and each given
noise is assumed to be xed (i.e. SNR is xed). Since the
values of det(Uv) and det(Ux) only correspond to the vari-
ance of a given noise and signal, respectively, they can be
considered to be constants. The maximum value of the term
E{ln(p(y|x)p(x))} can then be approximated as

E{ln(p(y|x)p(x))}max

= −H(sv) + ln |det(Uv)| − H(sx) + ln |det(Ux)|
= −H(sv) − H(sx) + C (11)

where C = ln |det(Uv)| + ln |det(Ux)| is a constant.
As the entropy of a non-Gaussian variable can be approx-

imately related to negative of its kurtosis [9], the value of en-
tropy terms H(·) in Eq. 11 will be smaller as the variable s is
more non-Gaussian (i.e. higher kurtosis), and will have max-
imum value for a Gaussian variable. Then, considering Eq. 6
and Eq. 11, the minimum of Bayes risk denoted by Rx,v will
be in the order of

R(xng,vng) < R(xng,vg) < R(xg,vg) (12)

where the subscripts ng and g denote non-Gaussian and Gaus-
sian distribution, respectively. As can be seen, the denoising
capability improves with increasing the non-Gaussianity of
signal.

Note that when both the signal and noise are Gaussian, the
MAP estimator lead to the best linear estimator, i.e. Wiener
lter denoising. This means that allowing the nonlinearity

in the estimation would not improve the performance when
both the signal and noise are Gaussian. On the other side, the
proposed algorithm can achieve best results in the case of a
non-Gaussian signal corrupted by a non-Gaussian noise.

4. THE PROBABILITY DENSITY MODEL

4.1. Generalized Gaussian Model

Another important issue of MAP is to model the density
function for the given random variables. The model should
be a good t to various degrees of non-Gaussian (while still
being computationally feasible). In this paper we propose to
employ the Generalized Gaussian Model (GGM). Box and
Tiao [6] expressed GGM in the following general form

p(z|μ, δ, β) =
ω(β)

δ
exp[−c(β)|z − μ

δ
|2/(1+β)] (13)

where

c(β) = [
Γ[3(1 + β)/2]
Γ[(1 + β)/2]

]1/(1+β) (14)

ω(β) =
Γ[3(1 + β)/2]1/2

(1 + β)Γ[(1 + β)/2]3/2
(15)

where Γ is gamma function.
The μ and δ denote the mean and standard deviation of

the data, respectively. The parameter β controls the deviation
of the distribution from Gaussian; by varying β, the Eq. 13
can describe Gaussian, sub-Gaussian, super-Gaussian distri-
butions. For instance, when β = 0 the distribution is Gaus-
sian and when β = 1 it is a Laplacian. As β → −1, the
distribution becomes uniform, as β → ∞, the distribution is
a delta function.

For zero mean and unit variance variable z, the function
f ′ in Eq. 4 can be expressed as

f ′(z) =
−2c(β)
1 + β

|z|2/(1+β)−1 (16)

4.2. Parameter estimation

In our case, the signal is assumed to be zero mean and
unit variance, the problem then resorts to the estimation of the
value of β. By MAP method, the parameter β can be obtained
by maximization of the posteriori density function given the
training signal x = {x(1), · · · , x(T )}, i.e.,

β = arg max
β

p(β|x) ⇔ arg max
β

p(x|β)p(β) (17)

where the data likelihood is:

p(x|β) =
∏

t

ω(β)exp[−c(β)|x(t)|2/(1+β)] (18)

and p(β) de nes the prior distribution of β, which is sug-
gested in [11] to be modelled by Gamma function, i.e. p(β) �
Gamma(β|c1, c2) , where c1 and c2 are constant. Choosing
the values c1 = c2 = 2 can give a broad distribution with
95% densities range of β ∈ [−0.5, 10.5] [11].

5. EXPERIMENTAL RESULTS

Since the MAP based Gaussian noise signal enhancement,
i.e. sparse code shrinkage and best linear estimation (Wiener
lter) have been well researched, our evaluation focuses on

enhancement of signals corrupted by a non-Gaussian noise.
The proposed algorithm is evaluated with speech signals from
the TIMIT database, separately for each gender. The training
set contained 30 sentences for each gender, which were ran-
domly selected from the DR1 subset, and testing set contained
ve sentences of speaker fdaw0 (female) and mcpm0 (male);

sentences from testing speakers were not used in the training
set. Noisy speech signals are created by adding the Railway
and Pub noise from the Noisex92 database to the clean speech
signal at SNR=0dB. Half of the noise signals is used to train
the ICA basis functions, while the other half is used to cor-
rupt the test signals. All of the signals are sampled at 8 kHz.
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During training, the signals are segmented into frames of 64
samples by rectangular window, and the fast-ICA algorithm
[9] is applied to extract ICA basis functions from the training
data. The results obtained by the proposed algorithm, com-
pared with standard Wiener lter and sparse code shrinkage
method, are presented in Table 1. It can be seen that the pro-
posed algorithm signi cantly improves the SNR for both gen-
ders in both noisy conditions. The time-domain waveforms of
the original clean signal, noise corrupted signal, and enhanced
signal by the proposed algorithm are illustrated in Figure 1.

Table 1. The comparison of the proposed ICA-based MAP
algorithm, standard Wiener lter and sparse code shrinkage.

Enhancement Enhanced SNR
algorithm Pub Railway

Male Proposed method 6.9 7.0
Wiener lter 0.8 2.6

Sparse code shrinkage 1.3 1.1
Female Proposed method 5.9 10.8

Wiener lter 1.9 3.7
Sparse code shrinkage 2.8 2.5

0 5000 10000 15000
1

0

1
orignal speech

0 5000 10000 15000
1

0

1
noisy speech

0 5000 10000 15000
1

0

1
enhanced speech

Fig. 1. Speech signal enhancement result for female speech
corrupted by Railway noise at 0dB.

6. CONCLUSION

In this paper, we presented the ICA based MAP speech
signal enhancement method. The denoising capabilities of
the proposed algorithm were analysed considering for both
speech and noise signals both Gaussian and non-Gaussian dis-
tribution. The analysis result shows that the proposed method

is most ef cient for non-Gaussian signals corrupted by a non-
Gaussian noise. The generalized Gaussian model was pro-
posed to be used in modelling the density function in the
MAP. The experiments were conducted for enhancement of
speech corrupted by additive non-Gaussian noises. The ob-
tained results showed signi cant performance improvement
achieved by the proposed algorithm in comparison to Wiener
ltering and sparse code shrinkage.

This work was supported by UK EPSRC grant
EP/D033659/1. And partially supported by Program for New
Century Excellent Talents in University, China (NCET-05-
0582).
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