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ABSTRACT

We present a simple, fast and previously unreported noise compen-
sation method for particle filter (PF) based speech feature enhance-
ment, which outperforms the vector Taylor series noise compensa-
tion method used by current PF approaches in terms of speed as well
as word error rate. Furthermore, we devise a fast acceptance test
that overcomes the particle decimation problem associated with PFs
for speech feature enhancement, which makes the particle filter ap-
proach computationally more efficient.

Index Terms— Speech feature enhancement, particle filter, vec-
tor Taylor series, statistical inference, automatic speech recognition

1. INTRODUCTION

Since its appearance in 1996 Moreno’s Vector Taylor Series (VTS)
approach [1] has kind of become todays ”industry standard” for non-
stationary noise compensation in speech feature enhancement. Orig-
inally, the noise distribution — assumed to be Gaussian — was es-
timated with a modified expectation maximization (EM) algorithm
on a segment of corrupted speech, which was later extended to se-
quential estimation of non-stationary noises. The merit for this is
probably due to Kim and his inspiring sequential EM [2] and inter-
acting multiple model (IMM) [3] approaches, which have motivated
a lot of work in this direction and eventually led to the application of
particle filtering to the problem [4].

We show how VTS-based noise compensation, as used in cur-
rent PF approaches [4, 5, 6], can be derived without a Taylor series
approximation. This is achieved by reformulating speech feature en-
hancement as a tracking problem, which leads to a statistical infer-
ence approach where the VTS formula is obtained by introduction
of a hidden variable. Not introducing this hidden variable yields a
straight-forward noise compensation method, that is not only com-
putationally much less intensive1 but also outperformed the speech
recognition results of VTS noise compensation in experiments.

This paper is organized as follows. In section 2 we briefly restate
Raj et al.’s approach [4]. Section 3 derives the novel noise compen-
sation technique as well as the VTS noise compensation method. In
section 4 we devise a fast acceptance test that overcomes the parti-
cle decimation problem associated with PFs for speech feature en-
hancement. Sections 5 and 6 present experimental results and our
conclusions.

1As mentioned in [7] VTS noise compensation in practice dominates the
computational cost of the particle filter.

2. PARTICLE FILTER BASED SPEECH FEATURE
ENHANCEMENT

In [4] the evolution of (log Mel) noise spectra is modeled as a 1st-
order autoregressive process

nt = A · nt−1 + εt

where A is the transition matrix that is learned for a specific type of
noise and nt denotes the noise spectrum at time t. The εt terms are
considered to be i.i.d. zero mean Gaussian, i.e. εt ∼ N (0, Σnoise),
where the covariance matrix Σnoise is assumed to be diagonal. So
the noise transition probability p(nt+1|nt) can be written

p(nt+1|nt) = N (nt+1; A · nt, Σnoise) (1)

Modeling the distribution px of clean speech (log Mel) spectra xt as
a mixture of K Gaussians N (μk, Σk) with mixture weights ck and
using the relationship2

xt = yt + log(1− ent−yt) (2)

between corrupted speech spectra yt, nt and xt (all in the log Mel

domain), the likelihood l(n
(j)
t ; yt) = p(yt|n(j)

t ) of a noise hypothe-

sis n
(j)
t can be evaluated as

p(yt|n(j)
t ) =

px(yt + log(1− en
(j)
t −yt)∏d

i=1

∣∣∣∣1− en̂
(j)
t,i−yt,i

∣∣∣∣
(3)

because of the fundamental transformation law of probability. If,

however, n
(j)
t exceeds yt in just one spectral bin – say the ith – then

n
(j)
t,i ≥ yt,i ⇒ en

(j)
t,i ≥ eyt,i ⇒ en

(j)
t,i−yt,i ≥ 1

and log(1− en
(j)
t −yt) can’t be calculated. That is the result of con-

sidering noise and speech power spectra (not in the log domain) to
be strictly additive (see [6] or [8] for more detail). Hence it is im-

possible3 that ‖n(f)
t,i ‖2 > ‖y(f)

t,i ‖2, which is translated to probability
by setting p(yt|nt) := 0. Thus, the particle filter for speech feature
enhancement can be outlined as follows:

1. Sampling — At time zero (t = 0) noise hypotheses (par-

ticles) n
(j)
0 (j = 1, ..., N ) are drawn from the prior noise

density p(n0). If t is bigger than zero, n
(j)
t is sampled from

the noise transition probability p(nt|n̄(j)
t−1) (equation (1)) for

j = 1, ..., N .

2log and e are applied componentwise and 1 = (1, . . . , 1)
3The speech power spectrum ‖x(f)

t ‖2 is always positive. Superscript (f)

denotes the Fourier domain and xt is log(‖x(f)
t ‖2).
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2. Calculating the normalized importance weights — The

importance weight (likelihood) of each noise hypothesis n
(j)
t

is evaluated according to equation (3) if n
(j)
t,i < yt,i for

i = 1, . . . , d. Otherwise p(yt|n(j)
t ) is set to zero. The nor-

malized importance weights are calculated as

ω̃
(j)
t =

p(yt|n(j)
t )∑N

m=1 p(yt|n(m)
t )

3. Inferring clean speech — Clean speech is inferred by using
the weighted empirical density

p̃(nt|y1:t) =

N∑
j=1

ω̃
(j)
t δ

n
(j)
t

(nt) (4)

— a discrete Monte Carlo representation of the continu-
ous filtering density p(nt|y1:t) (see [8]) — to approximate
E[xt|y1:t]. The details will be derived in section 3.

4. Importance resampling — The normalized importance
weights are used to resample among the noise hypotheses

n
(j)
t (j = 1, ..., N). This can be regarded as a pruning step

where likely hypotheses are multiplied, unlikely ones are re-
moved from the population.

These Steps are repeated with t �→ (t + 1) until all time-frames are
processed.

3. INFERRING CLEAN SPEECH

Speech feature enhancement can be formulated as to track the clean
speech spectrum xt with the observation history y1:t = {y1, . . . , yt}
using the probabilistic relationship p(xt|y1:t). As stated by Julier
and Uhlmann [9] the MMSE solution to such a tracking problem
consists in finding the conditional mean E[x1:t|y1:t]. Assuming that
(Xt)t∈N is a Markov process and that the current observation is only
dependent on the current state facilitates sequential calculation of the
conditional mean (a proof can be found in [8]):

E[xt|y1:t] =

∫
xt · p(xt|y1:t)dxt (5)

The noise can be introduced as a hidden variable since p(xt|y1:t)
can be calculated as marginal density of p(xt, nt|y1:t):

p(xt|y1:t) =

∫
p(xt, nt|y1:t)dnt

Further, using p(xt, nt|y1:t) = p(xt|y1:t, nt)·p(nt|y1:t) and chang-
ing the order of integration we obtain

E[xt|y1:t] =

∫ ∫
xt · p(xt|y1:t, nt)dxt︸ ︷︷ ︸

=:ht(nt)

p(nt|y1:t)dnt (6)

This is equivalent to calculating Ep(nt|y1:t)[ht(nt)|y1:t]. Hence the
weighted empirical density (4) provided by the PF can be used to
approximate (6) by Monte Carlo integration (see [10] or [8] on this
topic):

E[xt|y1:t] ≈
N∑

j=1

ht(n
(j)
t )ω̃

(j)
t (7)

We still need to evaluate ht(n
(j)
t ), the integral defined in (6). That’s

where the VTS approach departs from the straight-forward statistical
inference approach.

3.1. The Straight-Forward Approach

The straight-forward approach (SFA) uses the relationship between
xt, nt and yt from equation (2). This makes the probability density
p(xt|y1:t, nt) deterministic, since xt is completely determined if yt

and nt are given:

p(xt|y1:t, nt) = δ
yt+log(1−ent−yt )

(xt)

where δ(·) denotes a translated Dirac delta function. Substitution of
p(xt|y1:t, nt) in ht(nt) =

∫
xt · p(xt|y1:t, nt)dxt yields

h
(1)
t (nt) =

∫
xt · δyt+log(1−ent−yt )

(xt)dxt

= yt + log(1− ent−yt) (8)

This can be regarded as spectral subtraction in the logarithmic do-
main (for one noise hypothesis).

3.2. The Vector Taylor Series Approach

The approach proposed by Raj et al. [4] is to use Moreno’s VTS
method [1] which approximates log(1 + ent−xt) by its 0th order4

Taylor series expansion around the kth Gaussian’s mean μk of the
clean speech distribution. For the case of the PF, where the noise
variance is implicitly contained in the different noise hypotheses of
the weighted empirical density, the VTS noise compensation scheme
can be derived directly, i.e. without VTS approximation. The fol-
lowing statistical derivation shows which assumptions (they are nor-
mally hidden in the VTS approximation) have to be made:

First of all, the number of a specific Gaussian of the clean
speech distribution can be introduced as a hidden variable k, since
p(xt|y1:t, nt) can be represented as the marginal density

p(xt|y1:t, nt) =

K∑
k=1

p(xt, k|y1:t, nt)

Further, using the equality p(xt, k|y1:t, nt) = p(k|y1:t, nt) ·
p(xt|k, y1:t, nt), ht(nt) can be written

ht(nt) =

K∑
k=1

p(k|y1:t, nt)

∫
xt · p(xt|k, y1:t, nt)dxt (9)

where the sum over k was pulled out of the integral. Now, the noise
can be considered to shift the means of the clean speech distribution
px in the spectral domain. The effect of nt to the kth Gaussian in
the log spectral domain is

eμ′k = eμk + ent

Solving for μ′k yields

μ′k = μk + log(1 + ent−μk )︸ ︷︷ ︸
=:Δμk,nt

(10)

Instead of shifting the mean, we can conversely shift the corrupted
spectrum yt in the opposite direction5 to obtain the clean speech
spectrum

xt = yt −Δμk,nt (11)

4Higher order approximations were also examined in [1].
5Note, that this does not change the probability, i.e. N (yt; μ′k, Σk) =

N (xt; μk, Σk).
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This deterministic relationship yields p(xt|k, y1:t, nt) =
δyt−Δμk,nt

(xt) and hence

h
(2)
t (nt) =

K∑
k=1

p(k|y1:t, nt)

∫
x · δyt−Δμk,nt

(xt)dxt

=

K∑
k=1

p(k|y1:t, nt) (yt −Δμk,nt)

= yt −
K∑

k=1

p(k|y1:t, nt)Δμk,nt (12)

Comparing this equation with equation (19) of [4] shows that the
VTS approach approximates p(k|y1:t, nt) by p(k|yt, nt).This is
equivalent to assuming that k — the number of the Gaussian in
the Gaussian mixture px that ”produced” the speech spectrum xt

— is independent of the preceding corrupted speech spectra, if yt

and nt are known. Another assumption implicitly made by Raj
et al. is that k is independent of the current noise spectrum, i.e.
p(k|nt) = p(k) = ck, which is perfectly true for additive noise, not
however for noise spectra that contain reverberations of speech as in
far distance data. Assuming that, p(k|y1:t, nt) can be calculated as

p(k|yt, nt) =
p(yt|nt, k) · p(k|nt)

p(yt|nt)

=
ck · p(yt|nt, k)∑K

k=1 ck · p(yt|nt, k)

4. GETTING THE FILTER TO WORK

In practice there are some issues that prevent the particle filter from
working well. The major issue is that noise hypotheses are not al-
lowed to exceed the observed, contaminated spectrum. Assigning a
zero weight in this case comes with the side-effect that overestima-
tions of the actual noise as well as cancellation due to relative phase
differences between noise and speech lead to a decimation of the
particle population up to its complete annihilation if all weights are
zero. This problem has previously been described by Haeb-Umbach
and Schmalenstroeer [6]. In [7] we described, how dropouts — the
case where all particles have zero likelihood — can be handled by
reinitializing the particle filter with the noise distribution. Here we
show how to tackle this problem by reducing the number of dropouts
through a fast acceptance test.

4.1. A Fast Acceptance Test

The best solution to handling sample attrition and dropouts is of
course be not to let them happen. In fact, the number of dropouts can
be reduced by increasing the number of samples (N ), which however
greatly increases the computational time. We propose to use a fast
acceptance test (FAT) that virtually boosts the number of particles
up to (N · B) if necessary. The acceptance test works as follows:
when drawing noise hypotheses for time t in the sampling step of

the particle filter, the drawn sample n
(j)
t is rejected if n

(j)
t,i < yt,i ∀i

is not satisfied. In case of rejection another particle n
(s)
t−1 is selected

by drawing s ∈ {1, . . . , N} and n
(j)
t is sampled from p(nt|n(s)

t−1).
This is repeated until the noise hypothesis is accepted or a certain
number B of iterations has passed.

for j = 1 to N do
l = 0
s = j
accept = false
while (l < B) and (accept == false)

sample n
(H)
t from p(nt|n̄(s)

t−1)

if (n
(H)
t,i < yt,i ∀i)
accept = true

else
randomly select s ∈ {1, . . . , N}
l = l + 1

end while
n

(j)
t = n

(H)
t

end for

Algorithm 4.1: Fast Acceptance Test

The advantage of this approach is that the number of samples stays
constant while particle shortages due to the decimation problem can
be overcome. The worst case computational time is limited by B, but
in practice it is much lower then using (N · B) particles. Randomly
selecting another particle to sample from in case of rejection makes
sure that the predictive density p(nt|nt−1) is not changed. Dropouts
still occur, however less often.

5. EXPERIMENTS

In order to evaluate the performance of the proposed PF enhance-
ments under realistic conditions we chose approximately 45 min-
utes of lecture speech. As a speech recognition engine we used the
Janus Recognition Toolkit (JRTk) with the same setup as described in
[7]. Furthermore, we used warped minimum variance distortionless
response (MVDR) cepstral coefficients [11], since they have been
shown to outperform Mel frequency cepstral coefficients [7]. The
acoustic training material (approximately 100 hours) used for the ex-
periments reported here was taken from the ICSI, NIST, and CMU
meeting corpora, as well as the Translanguage English Database
(TED) corpus resulting in 3,500 context dependent codebooks with
up to 64 Gaussians with diagonal covariances each. The 3-gram
language model contained approximately 23,000 words with a per-
plexity of 125.

In a first experiment we artificially added highly dynamic noise
with a broad variety of sounds coming from a truck, slamming
rubbish containers, distant voices, and shouts [12] to evaluate the
fast acceptance test’s capability to reduce particle decimation and
dropouts. We have selected a signal to noise ratio (SNR) of 0dB,
since the decimation problem is typically more severe for lower
SNRs. Clean speech inference was performed with the SFA. Table 1
shows that the dropout rate is significantly reduced by the fast accep-
tance test. While it decreases with the number of particles without
FAT, it seems to vary around 1.4% if FAT is used. The mean square
error reduction (MSER) per frame increases with the number of par-
ticles in both cases, but it is much higher with the fast acceptance test
— more than 6.5% absolute. The word error rate (WER) is shown
for an unadapted and an adapted pass, which uses maximum likeli-
hood linear regression (MLLR). While there seems to be some gain
on the unadapted pass, this is much more unclear for the adapted
pass. In the following experiments we used 100 particles and the
fast acceptance test.

Table 2 gives a comparison with VTS (with FAT). While there is
practically no difference in MSER (compare to table 1), the WERs
differ greatly for the two approaches. An interesting result is that
the improvement in WER of the unadapted pass only marginally
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WER
#particles FAT % dropout MSER unadp. adapted

100 no 6.17 12.52 55.1 39.6
200 no 5.69 13.99 55.0 39.3
400 no 4.62 15.66 55.5 40.8
800 no 4.40 16.97 54.2 39.6

100 yes 1.48 19.57 53.3 39.9
200 yes 1.54 20.85 53.9 38.9
400 yes 1.21 22.37 54.6 40.0
800 yes 1.50 23.52 54.1 39.8

Table 1. Mean square error reduction (MSER) and word error rates
(WER)s for different numbers of particles with SFA noise compen-
sation with and without the fast acceptance test (FAT).

diminishes on the adapted pass. The baseline (without particle fil-
ter) is 60.2% for the unadapted and 42.4% for the adapted pass,
respectively. On the more significiant, adapted pass, the WER for
VTS noise compensation is not significantly better than the baseline,
while the WER for the SFA is more than 2% (5% relative) lower.

WER
#particles SFE MSER unadp. adapted

100 VTS 19.54 55.3 41.3
200 VTS 20.87 55.5 41.3
400 VTS 22.30 55.8 42.1
800 VTS 23.47 56.0 42.6

Table 2. Mean square error reduction (MSER) and word error rates
(WER)s for vector Taylor series (VTS) noise compensation with fast
acceptance test

We performed some more experiments (Table 3) with different SNRs
for the highly dynamic noise of the previous experiments (noise type
1) as well as for a much less dynamic (almost stationary) noise —
the humming of a hydroelectric power plant [13] (noise type 2). The
SFA approach is constantly better than VTS noise compensation.
Comparison with the speech recognition results without speech fea-
ture enhancement (SFE) shows that those gains are not insignificant.
The WER is much lower for the stationary noise than for the non-

WER
Noise Type 1 Noise Type 2

SNR SFE unadp. adapted unadp. adapted

clean none 31.0 25.4 31.0 25.4
10dB none 39.4 29.2 33.9 26.6
5dB none 48.1 33.8 34.8 28.3
0dB none 60.2 42.4 40.5 32.9

10dB VTS 36.9 28.6 32.6 26.9
5dB VTS 43.7 32.6 34.7 28.9
0dB VTS 55.3 41.3 40.0 31.7

10dB SFA 36.3 28.1 31.2 26.2
5dB SFA 43.1 31.9 34.2 27.5
0dB SFA 53.3 39.9 39.9 31.5

Table 3. Word error rates (WER)s for 100 particles, fast acceptance
test, dynamic and static noise types

stationary one. This might be due to cepstral mean normalization
(CMN) and cepstral variance normalization (CVN), or because the

stationary noise’s mechanical character does not have such a serious
impact on our features: linear discriminant analysis (LDA) coeffi-
cients of 15 successive mel frequency cepstral coefficients (7 to the
left, 7 to the right).

6. CONCLUSIONS

We feel it is worth to replace VTS with SFA noise compensa-
tion when it comes to particle filter approaches. It is faster and
easier to implement, while performing somewhat better than the
VTS approach with respect to WER. The fast acceptance test re-
duces the particle decimation problem and performs greatly better in
terms of MSER. Furthermore, it reduces the WER of the unadapted
pass, which could be of interest especially for ASR systems without
MLLR adaptation.
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