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ABSTRACT

Most of the published voice conversion schemes do not consider de-
tailed prosody modeling but only control the F0 level and range.
However, the detailed prosody can also carry a signi cant amount
of speaker identity related information. This paper introduces a new
method for converting the prosody in voice conversion. A syllable-
based prosodic codebook is used to predict the converted F0 using
not only the source contour but also linguistic information and seg-
mental durations. The selection of the most suitable target contour is
carried out using a trained classi cation and regression tree. The F0
contours in the codebook are represented in a transformed domain
which allows compression and fast comparison. The performance
of the prosodic conversion is evaluated in a real voice conversion
system. The results indicate a signi cant improvement in speaker
identity and naturalness when compared to GMM (Gaussian mix-
ture model) based pitch prediction approach.

Index Terms— Voice conversion, prosody conversion,
prosodic codebook

1. INTRODUCTION

Voice conversion (VC) has been an active research topic during the
past two decades (e.g. [1], [2], [3], [4], [5]), although commercial
usage of the technology has not yet been popular. The term voice
conversion refers to the modi cation of the speech of one speaker
(source) to sound as if it was uttered by another speaker (target),
while maintaining the lexical content of uttered speech. Even though
short-term spectral conversion has gained a lot of interest, there has
been only a little consideration of converting the prosodic features
like F0 movements and speaking rhythm. In this paper, we use the
term prosody conversion to refer to F0 and durational modi cations.
The main focus is on F0 modi cation.

One potential application for voice conversion techniques is us-
age in a text-to-speech (TTS) system. In this context, voice conver-
sion could be used for easy generation of TTS voices. The original
TTS voice recordings have usually been spoken with at prosody in
order to better enable smooth concatenation of units, and this creates
challenges also for the voice conversion techniques if the TTS voice
is used as a source voice.

Prosody is affected not only by the content of the sentence but
also speaker-speci c variations. For the same sentence, different
people generally produce different prosody. In addition, the same
person can also utter the same sentence with quite different prosodies
if her/his speech is recorded several times. Due to these reasons, the
goal in prosodic conversion can be declared to be the generation of
”believable” prosody, i.e. prosody that the target speaker could use
in a certain context.

Many of the publications in the area of voice conversion neglect
detailed prosodic modeling. The most popular method is to adjust
the F0 level and range of every F0 measurement point fs as

ft =
fs − μs

σs
· σt + μt (1)

where μs, σs, μt, and σt represent mean and standard deviation
(std) of the F0 values for the source and the target, respectively. In
the paper, this approach is referred to as the MS method. The MS
method retains the shapes of source F0 contours and cannot model
local changes in F0. A more sophisticated mapping function can be
obtained by representing pitch values with GMMs (Gaussian mix-
ture models). This approach actually leads to a weighted sum of
different mapping functions. The GMM based pitch prediction [6]
is the method that our approach is examined against in the listening
tests in Section 4.

There are not many proposals in the literature for converting F0
contours or other prosodic features in more detail. Chapell et al. [7]
described three F0 prediction methods: the MS method as in (1), a
similar approach but using a cubic t to the data, and an utterance
level codebook. These three methods and a voiced contour code-
book were evaluated in [8]. A closely-related idea of voiced con-
tour codebook was presented previously in [9] but instead of picking
only one contour like in [8], the resulting contour was formed by
using a weighted average of all contours according to the distance
between a codebook source contour and the voiced contour to be
transformed. In [10], sentence-initial high and sentence- nal low F0
values as well as hand-marked accents were modeled using separate
means and standard deviations.

In the method introduced in this paper, a syllable-level code-
book containing paired source and target F0 contours is built. The
F0 information is compressed using discrete cosine transform (DCT)
coef cients that enable fast comparison and make it possible to avoid
the use of dynamic time warping (DTW) based techniques for align-
ment. The codebook source contours that are close enough to the
source contour under conversion (referred to as SCUC) are regarded
as candidates and the nal decision is made based on a CART (clas-
si cation and regression tree) that is trained on linguistic and dura-
tional features.

The F0 contours stored in the codebook are actual contours es-
timated directly from the speech data without any clustering or av-
eraging of contours. In addition, only one target contour is chosen
as the output in order to avoid the risk of obtaining a at contour as
a result of weighted averaging. The linguistic context is taken into
account in the selection to avoid producing linguistically incorrect
contours.

The paper is organized as follows. In Section 2, the proposed
prosody conversion approach is introduced on a general level. In
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Section 3, the method is described in detail. The experimental re-
sults obtained in a listening test are presented in Section 4 whereas
Section 5 concludes the work.

2. GENERAL DESCRIPTION OF THE METHOD

The prosody models used in TTS systems are usually trained using
a very large database (consisting of e.g. 10 hours of speech). In
voice conversion, the size of the training set has to be much smaller
(only a few minutes), e.g. to enable online training for the users.
Consequently, the aim in this work is not to build a sophisticated
prosody model but only to capture some major tendencies from the
data.

We propose to model prosody at the syllable level. Syllable is a
linguistically determined unit but it can be also considered prosod-
ically justi ed. Prosodic events take place in synchrony with sylla-
bles or groups of syllables. For example, the tone sequence theory
on intonation modeling concentrates on F0 movements on syllables.
The syllable level also seems to be quite robust on labeling errors.
According to the sonority principle in English [11] that also applies
to many other languages, the voicing should be continuous in the
syllable. This issue is bene cial from the viewpoint of obtaining
meaningful contours for the codebook.

The prosodic codebook is generated by rst collecting syllable-
aligned F0 contours using parallel training sentences from the source
and the target speakers. The F0 contours are transformed into DCT
coef cients and this information is stored in the codebook as vector
pairs. Linguistic and durational information is also stored for each
entry. As a second part of the training process, a CART is trained
using the codebook as the training data. The role of the CART is to
help in the selection process.

During conversion, the SCUC is transformed into DCT domain
and compared to the codebook keys (source contours). The code-
book entries whose source contours are close enough to the SCUC
are chosen as candidates for the nal selection that is performed us-
ing the CART. The target contour of the selected entry is IDCT (in-
verse DCT) transformed and given a F0 level value from the mean
level of the current syllable predicted with the MS method. These
steps are described in more detail in the following subsections.

3. DETAILED DESCRIPTION OF THE METHOD

3.1. Codebook generation

Using parallel corpora from the source and the target speakers with
boundary labels and linguistic descriptions, the syllable-length F0
contours are obtained using a pitch estimation algorithm. The re-
sulting source and target contours of each syllable can further be
smoothed, if necessary, and possible F0 outliers at the syllable bound-
aries can be removed. The syllables containing voiced contours that
have a too short duration for meaningful contour representation are
discarded. For all the other syllables, the process is continued by ap-
plying DCT on the contours. M rst DCT coef cients of the source
and the target are stored, denoted as sk and tk for the syllable k, re-
spectively. The rst coef cient does not have to be stored as it can
be set to zero since it represents the bias (F0 level) that is handled
separately. Due to the truncation or zero-padding to the length M ,
the coef cients are normalized by the factor

√
N , where N denotes

the length of the original contour.
In addition to the DCT domain contours, simple linguistic infor-

mation and duration features are stored in the codebook for each en-
try. This information can be obtained from almost any TTS system,

without training speci c models. We have decided to use features
that have also been popularly used in data-driven prosody genera-
tion techniques: lexical stress, local position in the word {initial,
mid, nal, monosyllabic}, global position in the phrase {initial, -
nal, rst in a prosodic phrase (predicted using simple punctuation
rules), none}, Van Santen-Hirschberg classi cation for onset as well
as coda {unvoiced, voiced but no sonorants, sonorant} and the type
of the word the syllable belongs to {content, function}. In addition
to the linguistic information related to a speci c syllable, the infor-
mation related to the previous and the next syllable can also be taken
into account. As the duration related features, the total duration of
the syllable for the source and the target, respectively, and the dura-
tion of the voiced contour of the source and the target, respectively,
are stored in the codebook for each entry.

3.2. CART training

In the training of the CART, the design goal is to build a tree that can
output an optimality score based on the linguistic and durational sim-
ilarity. The process begins with the generation of the training data.
As a preliminary step, two distance matrices are computed based on
the codebook. The elements of a source-side distance matrix A are
computed as

akj =

M−1X

m=0

(s(m)k − s(m)j) k, j = 1, 2, . . . ,K (2)

whereK denotes the number of syllables in the codebook. As can be
seen from the equation, the element ajk gives the distance between
the source contours j and k. A similar distance matrix B is computed
for the target contours.

The training data is formed from the codebook data as follows.
All the entries in the codebook are taken into consideration, one by
one. For the entry j, this means that the source contour of this entry
is compared against the source contours of the other entries based
on the elements of matrix A from aj1 to ajK except for ajj . If ajk

is below a threshold, i.e. ajk < δj , the corresponding entry k is
considered a potential candidate for being a good substitute for the
entry j. The threshold δl is made adaptive on the source contour of
the entry l in such a way that a p% deviation from the closest match
is allowed in terms of contour distance. For each potential candidate,
the corresponding target distance bjk is obtained. Based on bjk, the
entry k is considered either a ”possibly optimal”, a ”neutral” or a
”non-optimal” candidate as an substitute for the entry j.

The codebook entries below an experimentally tuned threshold
βo are considered possibly optimal choices and the entries above
the threshold βn represent the non-optimal case. The neutral cases
falling between these thresholds are not used in the training since
they fall into an uncertain region. For the possibly optimal and non-
optimal entries, the linguistic information is compared against the
linguistic information of the entry j, resulting in a binary vector. In
the binary vector, each zero means that there was a match in the cor-
responding feature (for example 0 if both are monosyllabic), while
the value 1 means that the corresponding features were not the same.
In addition to the binary distances, the absolute differences of the
syllable durations and the voiced durations are also computed and
stored for usage as the training data. After repeating the above pro-
cedure for all the entries in the codebook, the generated training data
consists of a reasonably large amount of data from the two classes
(”possibly optimal” and ”non-optimal”) with the corresponding lin-
guistic and durational information.

The training of the CART aims at nding which features are im-
portant in the nal candidate selection. There can be many codebook
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entries that have quite similar source contours but clearly different
target contours, and thus nding out how much the duration and the
context affect the situation is important. In the CART training, we
have used a CART with gini impurity measure [12]. The CART was
pruned according to the results of 10-fold cross-validation in order
to prevent over- tting and the terminal nodes were pruned if they
ended up having only small number of observations.

3.3. Prediction of F0 contours

The conversion process starts from syllable boundary detection. The
DCT coef cients representing the syllable-length F0 source contours
are calculated and zero-padded or truncated to lengthM , taking into
account the normalization as described in Section 3.1. For the syl-
lables that do not contain suf ciently many F0 values for obtain-
ing a meaningful contour representation, the MS method is used in
the F0 prediction. Otherwise, the process starts similarly as in the
training: Some codebook entries become candidates based on the
small-enough difference between the source contours, computed as
in (2). The threshold for accepting candidates is determined based
on the minimum difference, allowing a p% deviation. If the thresh-
old becomes too high, the MS method is used. In all other cases,
the linguistic information between the SCUC and the candidates is
matched and the absolute differences in the syllable duration as well
as in the voiced contour duration are calculated. This information
is used as an input to the CART, and the candidate leading to the
tree node producing the highest probability for the possibly optimal
class is chosen as the selected codebook entry. If there are two or
more candidates producing the highest probability, the entry candi-
date whose source contour’s difference to SCUC is the smallest is
selected.

After selecting the most appropriate entry from the codebook as
described above, the nal contour is produced by taking the IDCT of
the corresponding target contour. The length in the DCT domain is
zero-padded or truncated to match the length of the SCUC, together
with appropriate weighting in order to obtain a contour having the
correct length (the possible duration change is handled separately).
Next, the F0 level is added to the contour. If the original F0 contour
is continuous across the boundary of two syllables k and k+1, the
converted contours are also made continuous by adding a bias value
to syllable k+1. The bias is determined as the difference between the
last point of syllable k and the rst point of syllable k+1. Since this
can result in major changes in F0 std calculated together for the two
syllables, the std is scaled back to the level where it was before the
change. In addition, the F0 level is also set again for these syllables,
now calculated together.

Conventionally, durations are modeled using a simple utterance
level scaling. We propose to apply syllable-level scaling using re-
gression coef cients calculated from all the source and target sylla-
ble durations. This results in more detailed modi cations than the
utterance-level scaling. Alternatively, the duration scaling ratios can
be predicted by building a CART using the linguistic features. A
third alternative is to use directly the target syllable duration that
corresponds to the chosen index.

4. EXPERIMENTAL RESULTS

4.1. How to evaluate prosody conversion?

There is no generally accepted objective measure for evaluating pro-
sody conversion. Since there are no strictly right or wrong F0 con-
tours for the target speaker, the goal should be to achieve acceptable

and believable prosody. In the literature, no evaluations were done
in [13] nor in [7]. In [8], the converted pitch was transplanted to
the real target utterance using dynamic time warping. Although the
intention is to prevent the spectral conversion from affecting the re-
sult, in our experiments this kind of evaluation did not reveal the
differences well. There are many other prosodic aspects (e.g. du-
rations, prosodic voice quality) that remain unchanged and the real
differences can be dif cult to hear. In [9], better prosodic modeling
improved the similarity to the target in a real voice conversion sys-
tem but the con dence score and the quality score decreased. A so-
phisticated VC system should retain its quality regardless of whether
we are using the conventional MS method or some more advanced
approach, and thus we feel that it is best to evaluate the prosody
conversion in connection with the spectral conversion.

4.2. Experimental set-up

Experiments in a real voice conversion system were conducted in
order to verify the impact of the proposed prosody conversion ap-
proach. A general description of the spectral conversion techniques
used in the experiments has been given in [6]. The language used
in the experiments was English (US). A female voice recorded for
TTS purposes served as the source database and several matching
sentences were collected from a male speaker. This target speaker
was allowed to speak more freely from the prosodic point of view.
An interesting observation related to the voices used in the test is
that the mean F0 level for the source (female) was 176 Hz and for
the target (male) 118 Hz and standard deviations were 18.1 Hz and
15.5 Hz, respectively. However, the mean syllable std in the sylla-
bles used in our codebook for the source and the target were 6.7 Hz
and 7.1 Hz, respectively. Thus, it is straightforward to see that global
std modi cations are misleading.

We decided to evaluate the performance of the proposed ap-
proach by comparing it against a GMM based pitch prediction model
in a listening test. Since the GMM based model and cubic conver-
sion functions were reported to result in quite similar performance
as MS [8], the most sophisticated approach of these, i.e. the GMM
based technique, was chosen for the experiment. This conventional
pitch conversion model was implemented as an 8-mixture GMM.

90 sentences were used for training the spectral conversion and
for the training of the proposed prosody conversion approach. 25
sentences, not included in the training set, were used for testing. F0
was measured at every 10 ms and 8 coef cients were used to repre-
sent the contour in the transformed domain. The F0 values for the
target were generated using two techniques, the GMM based mod-
eling (referred to as GA) and the proposed approach (referred to as
CB). The spectral part of the conversion was handled in both cases
using identical models and techniques. With the GA method, the du-
rations were not modi ed as the utterance-level scaling factors were
extremely close to 1 for all the test sentences. With the CB method,
the durations were modi ed using the proposed syllable-level scal-
ing. At the syllable level, 22 % of the syllable instances had a scaling
ratio falling outside of the range from 0.9 to 1.15.

4.3. Test arrangement

19 listeners participated in the test. Nativeness was not required as
the test was designed in such a way that also non-native listeners
with good English skills can easily judge the relevant issues from
the speech samples. The experiment contained two parts, Test 1 and
Test 2. In addition, at the beginning of the test, the subjects were
asked to listen to several speech samples from the real target speaker

IV  511



Table 1. Preference votes given to the proposed approach (CB) and
to the GMM based approach (GA), and the ”no preference” votes
(equal).

Method CB GA Equal
Test 1 67.0% (318) 22.7% (108) 10.3% (49)
Test 2 70.3% (334) 17.1% (81) 12.6% (60)

(not including the test sentences) and to pay special attention to the
speaking style.

In the rst part of the test, the listeners heard two versions of
the sentences (in which the prosody was converted using the two
different techniques, GA and CB). They were asked to choose the
sample that best mimicked the target speaker’s speaking style. They
were guided to choose the sample whose prosody could be closer to
the prosody that the target speaker could use. They were asked not
to care about quality of the spectral conversion. The subjects could
also choose ”equal” and it was possible to listen to the samples as
many times as necessary.

The VC system generally leads to somewhat robotic voice qual-
ity and the impact that the prosody may have to this phenomenon was
studied in the second part of the listening test. The same sentences
were played again and the listeners were asked to indicate which
sample sounded less robotic. Again, it was possible to respond that
the samples were equally robotic.

4.4. Results

The percentages of preference votes that the two methods received
as well as the total number of votes are shown in Table 1 for both
Test 1 and Test 2. In the rst part of the test (Test 1), the results
clearly indicate that the proposed approach was found to achieve
better prosody conversion than the GMM based approach. In the
second part (Test 2), the proposed technique was found to contribute
to the voice quality by making it less robotic.

According to a two-tailed t-test, there was a signi cant differ-
ence between the performances of the proposed CB method and the
GA method (p=2.9·10–14) for Test 1. Since there was also the third
alternative of samples being equally good, the performance of the
proposed method was also compared against the summed votes of
both the equal choice and the GA method votes. The results were
still statistically highly signi cant (p=9.8·10–10). For Test 2, a sim-
ilar analysis was performed and the results were also highly signif-
icant (p=7.3·10–19 and p=2.3·10–13) for the proposed approach to
sound less robotic.

5. CONCLUSIONS

The paper introduced a novel technique for F0 conversion in a voice
conversion framework. The proposed approach is based on a prosodic
codebook and it aims at nding a compromise between the best
possible contour match and the consideration of the linguistic con-
texts with a limited training data. The F0 contours are represented
in transformed domain that allows compression and fast compari-
son. The proposed method was tested in a real voice conversion
system. Listening tests showed very clear preference for the pro-
posed method in mimicking the target speaker’s speaking style when
compared against the GMM based F0 conversion. The proposed ap-
proach was also found to help the overall system in achieving less
robotic sound quality.
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