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ABSTRACT
Acoustic maps created on the basis of the signals acquired by

distributed networks of microphones allow to identify posi-

tion and orientation of an active talker in an enclosure. In ad-

verse situations of high background noise, high reverberation

or unavailability of direct paths to the microphones, localiza-

tion may fail. This paper proposes a novel approach to talker

localization and estimation of head orientation based on the

classification of Global Coherence Field (GCF) or Oriented

GCF maps. Preliminary experiments with data obtained by

simulated propagation as well as with data acquired in a real

room show that the match with precalculatedmapmodels pro-

vides a robust behavior in adverse conditions.

Index Terms— Speaker localization, head orientation, mi-
crophone arrays, room acoustics, distributed microphone net-

works.

1. INTRODUCTION

Traditional methods for acoustic source localizations are

based either on geometrical derivation of the optimal source

position based on the arrival directions estimated by sets of

microphones (DOA based methods) or on the maximization

of a quantity obtained by steering a microphone array to all

the potential source positions (steered-response based tech-

niques). A further possible approach consists in learning the

acoustic response of the environment by examples and in try-

ing to classify the observed data according to their similarity

to a predefined set of models.

The advantage of this solution is that it does not require

an accurate modeling of the acoustic environment as it can ro-

bustly deal with adverse phenomena like acoustic reflections

and reverberations. The disadvantage is that a training phase

is required to create the models. This type of approach was

used in [1] where a time delay classification based on his-

tograms is proposed, and more recently in [2], where magni-

tude and phase of the cross-spectrum calculated from micro-

phone pairs are used as discriminating features.
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In this paper we propose to use more articulated features

to model the interaction between the emitting source (active

talker) and the surrounding environment, as perceived by a

distributed network of microphones (e.g. a set of microphone

arrays disseminated on the walls of a room as in the CHIL

and DICIT projects [3]). Information about directionality of

the acoustic field produced by the speaker at various micro-

phone pairs can be condensed in a “global coherence”map, as

the Global Coherence Field (GCF) [4] or SRP-PHAT [5] used

to recover the location of the emitting source. Acoustic waves

generated in an enclosure by active sources reach the micro-

phones along both direct paths and as reflected and diffracted

wavefronts, all contributing to the shape of the resulting GCF

map. The peak of the map can generally be directly associated

to the source position, but the whole map in its entirety pro-

vides additional information on the generated acoustic field.

In fact, it can be exploited to derive further clues about the

location (and orientation) of the speaker with respect to the

microphones as well as about room acoustics.

If the non-omnidirectional directivity of the talker is also

accounted for, by properly weighting the information con-

tained in the map of global coherence, a more informative

map can be obtained, called Oriented Global Coherence Field

(OGCF). Use of OGCF has been shown [6, 7] to provide im-

proved performance with respect to GCF in the task of talker

localization. This paper proposes to integrate localization ob-

tained as maximum peak of GCF or OGCF with a classifica-

tion step considering the whole GCF or OGCF maps. This

seems reasonable as even when the peak-based localization

fails due to reflections, reverberation, or unavailability of di-

rect paths, the patterns in the maps of global coherence may

be associated to specific talker positions and orientations.

2. GLOBAL COHERENCE FIELD (GCF) AND
ORIENTED GCF (OGCF)

A Global Coherence Field (GCF) is a function, defined over

the space of possible sound source locations, which expresses

the plausibility that an active sound source is present at a

given point s. The GCF is obtained by summing partial
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plausibility contributions from a set of microphone pairs dis-

tributed in the room. For each pair the related contribution

represents the degree of coherence of the two signals at a time

lag corresponding to the interchannel delay observed when a

source is in s.
Here the coherence between the discrete time signals

xl1(n) and xl2(n) acquired by microphone pair l is calcu-

lated on intervals xl1 and xl2 centered around time instant t

by means of the GCC-PHAT [8, 9] as follows:

Cl(t, d) = DFT−1

{
DFT (xl1) ·DFT ∗(xl2)

|DFT (xl1)| · |DFT (xl2)|

}
(1)

where d denotes the time lag.

If we consider a set of L microphone pairs and indicate

with δl(s) the theoretical delay for microphone pair l when

the source is at position s = (xs, ys, zs), the GCF is expressed
as:

GCF (t, s) =
1

L

L−1∑
l=0

Cl(t, δl(s)) (2)

If restricted to a plane (x, y) the GCF at a given instant can

be represented as a map or grey-level image, with bright pix-

els in correspondence of coordinates producing high values of

“global coherence” (i.e. high plausibility of source presence).

The contribution of each single microphone pair can gener-

ally be easily identified as one or more brighter lines (actu-

ally hyperbolic curves) departing from the pair and passing

through the source and/or the points of reflection of the gen-

erated wavefronts. Constructive interference of contributions

gives rise, in favorable situations, to a single emerging max-

imum peak in correspondence of the source (see an example

in left part of Figure 1).

In general, as a talker is a quite directional source, only a

limited number of microphone pairs receive a prevalence of

direct wavefronts, whereas for the other ones energy of re-

flections is predominant. Besides, direct wavefronts produce

higher coherence levels than reflected/reverberated compo-

nents. These facts can be exploited to obtain clues about the

directivity of the source (e.g. head orientation) from a study

of the “shape” of the GCF around a given point, leading to the

concept of Oriented Global Coherence Field (OGCF). Given

L microphone pairs the OGCF maps can be derived for a set

of predefined possible orientationsϕj (j = 0..N −1) consid-
ering the coherence contributions on L points Kl on a circle

around the given point s (see [6, 7, 10]) according to the for-
mula:

OGCFj(t, s) =

L−1∑
l=0

Cl(t, δl(Kl))w(θlj) (3)

where w(θlj) is a weight computed from a gaussian func-
tion, whose purpose is to give more emphasis to contributions

along directions close to orientation ϕj .

3. THE PROPOSED APPROACH

During test of a real-time talker localization system based on

GCF and implemented in the CHIL room [3] at ITC-irst it

was observed that a satisfactory localization performance is

obtained, except when the talker is closely facing the walls,

the corners, or is speaking curved toward a table or other re-

flecting surfaces. In these unfavorable cases, the GCF cannot

be easily “decoded” by simply detecting the maximum peak

and associating it with the source coordinates (see right part

of Figure 1). Nevertheless, the GCF map still contains infor-

mation “encoded” in its particular shape, useful to detect and

classify the particular cases. Even if the direct wavefronts do

not provide sufficient clues for source localization, the par-

ticular patterns of reflected wavefronts may still be enough

to uniquely characterize the position of the emitting source.

As a direct modeling of the complex patterns of reflections

in a real environment is not easily obtained, the classification

based on examples seems to be a valid alternative to extract

reliable information about talker position and orientation.

Fig. 1. Two examples of GCF maps with an active speaker
on the right upper corner of the room. On the left map the

speaker is oriented toward the center of the room and is eas-

ily localizable. On the right map the speaker is in the same

position but is facing the corner: reflections are predominant.

A “pattern classification” approach is the first and straight-

forward attempt to exploit the additional information about

patterns of direct paths and reflections. To this purpose it is

necessary to create a set of models corresponding to various

talker positions and orientations. It is then necessary to define

a distance between the observed data and the stored models.
For the sake of simplicity we will now suppose to re-

strict the localization task to a 2-dimensional space, i.e. s =
(xs, ys), and to drop from notation the dependency from in-
stant t. Let us consider a room in which the set of possible

talker positions is identified by s ∈ A, where A is a spa-

tial sampling of the room (e.g. with resolution 5cm × 5cm).

Source position (and orientation) estimates can be obtained as

(x̂, ŷ) = arg max
(s∈A)

GCF (s) (4)

or

(x̂, ŷ, ϕ̂j) = arg max
(s∈A,j)

OGCFj(s) (5)

In case the peak of GCF or OGCF map is not clearly

identified, we can also compare the obtained maps with pre-
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calculated model maps μp,q, one for each predefined poten-

tial position p ∈ {P0, P1, ..., PM−1} and orientation q ∈
{Q0, Q1, ..., QR−1} of the speaker. All the models μp,q are

normalized by mean value subtraction and scaling to unitary

energy. The decision can be based on minimizing a similar-

ity measure expressing the difference between the calculated

map, after a normalization step, and the stored models. The

simplest comparison can be accomplished by means of theL1

norm d(p, q) taken “pixel by pixel” between the normalized
map Λ(s) and the models μp,q(s):

d(p, q) =
∑
s∈A

|Λ(s)− μp,q(s)| (6)

(p̂, q̂) = argmin
p,q

d(p, q) (7)

As an alternative to the L1 norm a correlation-based mea-

sure d′(p, q) between the map Λ(s) and the models can be
calculated [11] (and in this case maximized):

d′(p, q) =
∑
s∈A

[Λ(s) · μp,q(s)] (8)

ormore sophisticatedmorphological distances can be adopted.

4. EXPERIMENTS AND RESULTS

In order to validate the effectiveness of the proposed approach

a set of experiments was carried out using the distributed mi-

crophone network available at the ITC-irst CHIL room. The

sensor network, consisting of 7 T-shaped microphone clus-

ters, and a map of the room are depicted in Figure 2. It is

worth mentioning that the room is characterized by a rever-

beration time T60 = 0.7s which makes the localization task

quite hard.
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Fig. 2. Outline of microphone placement in the CHIL room
available at ITC-irst (left), and geometry of a T-shaped micro-

phone array (right). Each T-shaped array is placed vertically

on the walls.

For a preliminary evaluation a database was generated by

simulating speech production and propagation in the room.

Impulse responses were generated using a modified version

of the image method [12] which allows to account for source

directivity. A cardioid directivity pattern, roughly resembling

Fig. 3. Positions and orientations of the source in the simu-
lated data (left) and in the real database (right).

the characteristics of a talker, was adopted for the experi-

ments. Close-talk speech segments were then filtered with

the precalculated impulse responses in order to produce two

different sets of signals: the first one exploited to generate

GCF and OGCF based models and the second one to evalu-

ate algorithm performance. Real background noise acquired

at each sensor in the room was added to the signals in order

to make data more realistic. The overall simulated database

includes 4 SNR levels (30, 10, 5 and 0 dB), 5 positions and

8 different orientations for each positions, as depicted in left

part of Figure 3.

A second database of real data was also acquired to test

the proposed approach in a real scenario. In particular GCF

and OGCF based models were created on the basis of data

produced using a loudspeaker as source, placed and oriented

as shown in right part of Figure 3. Test data were instead

produced with a real human talker as source, with an average

resulting SNR about 20 dB. It is important to note that posi-

tion and orientation of the real talker are only nominally the

same as those of the loudpeaker used to produce the corre-

sponding models. Exact location of talker’s head is not easily

determinable, however this fact contributes to assess the fea-

sibility and robustness of the proposed method.

Given a position p and orientation q of the source, the

model μp,q was computed by processing the whole signals

acquired by the sensor network in order to produce a single

global coherence map. In the evaluation process, instead, an

analysis step of 100mswas adopted; localization and orienta-

tion estimates were produced only during intervals of source

activity (a speech activity detector is used to detect frames

containing speech). The analysis was restricted to the (x, y)
space and only horizontal microphone pairs were involved in

the computations of the maps. Unreliable estimates were de-

tected by comparing the distance between observed data and

the models, with a threshold depending on the adopted met-

rics. If the distances from all the models exceeded the thresh-

old, the corresponding data frame was assigned to the rejec-

tion class Π .

Two methods to compute the global coherence maps (and

the corresponding models) were compared:

• GCF: in this case Λ(s) = GCF (s) and the maps are
calculated on the test data according to eq. 2, and com-

pared with theM · R GCF models μGCF
p,q (s).
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Fig. 4. OER obtained with simulated speakers as a function
of the SNR. GCF and M-OGCF methods are compared using

both L1 norm (norm.) and correlation (corr.).

• M-OGCF: in this case Λ(s) = maxj [OGCFj(s)],
where OGCFj(s) is calculated according to eq. 3, and
the maps are compared with a set of models μOGCF

p,q (s)

For the two methods both the L1 norm and the correlation

between observed maps and models (see equations 6 and 8)

were applied.

Performance was measured in terms of Localization Error

Rate (LER) and Orientation Error Rate (OER) as percentages

of errors over the number of estimates.

With simulated data the thresholding process was not per-

formed and LER ranged from a minimum of 4.3% at 30 dB

to a maximum of 7.6% at 0 dB, with no significant difference

between the two methods and the two distance measures. Per-

formance in terms of OER is reported in Figure 4. It is worth

mentioning that most of the orientation errors reported in the

figure are within the contiguous angles (±45◦), the worst case
being at 0 dB SNR with 90% of estimates within this toler-

ance.

Table 1 summarizes results obtained with real-talker data.

It can be noted that even in the case of models acquired with

a different source (loudspeaker), and a limited accuracy in the

position/orientation of the real talker, performance is still sat-

isfactory in terms of LER. A limited drop in OER is mainly

due to classification into the directions adjacent to the cor-

rect one. These results were obtained with thresholds on the

distance measures empirically set to values such to guarantee

that a maximum of 25% of speech frames were rejected by

the classification procedure.

Method LER OER E≤ 45◦

GCF norm. 0.37% 9.0% 99.5%

GCF corr. 0% 9.3% 100%

M-OGCF norm. 0.16% 11.8% 99.5%

M-OGCF corr. 0% 11.9% 99.8%

Table 1. Results obtained on the real-talker data.

A further experiment on real data and models obtained

from simulated impulse responses did not provide encourag-

ing results as the imagemethodwould require a more accurate

geometrical model of the environment.

5. CONCLUSIONS

Results of the preliminary experiments reported in this paper

show that the proposed classification method offers reliable

information that could be advantageously integrated in GCF-

and, in particular, in OGCF-based localization systems to re-

solve critical cases of unfavorable position of the talker with

respect to the microphones.

Further study is needed to achieve more discriminant dis-

tance measures, to determine the number of models necessary

in realistic scenarios and to assess the robustness of the mod-

els in case of deviations with respect to predefined positions

and orientations.
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