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ABSTRACT

This paper presents an effective method for clustering unknown 

speech utterances based on their associated speakers. The proposed 

method jointly optimizes the generated clusters and the number of 

clusters by estimating and minimizing the Rand index of the 

clustering. The Rand index, which reflects clustering errors that 

utterances from the same speaker are placed in different clusters, 

or utterances from different speakers are placed in the same cluster, 

reaches its minimal value only when the number of clusters is 

equal to the true speaker population size. We approximate the 

Rand index by a function of the similarity measures between 

utterances and employ the genetic algorithm to determine the 

cluster where each utterance should be located, such that the 

overall clustering errors are minimized. The experimental results 

show that the proposed speaker-clustering method outperforms the 

conventional method based on hierarchical agglomerative 

clustering in conjunction with the Bayesian information criterion 

to determine the number of clusters. 

Index Terms—Clustering methods, Speech processing, 

Speaker recognition 

1. INTRODUCTION 

With the burgeoning availability of digital audio material, speaker 

clustering is gaining importance as a means of indexing the 

voluminous spoken data accumulated daily for archival use [1-14]. 

Given N speech utterances produced by P speakers, the goal of 

speaker clustering is to partition N utterances into M clusters, such 

that M = P and each cluster consists exclusively of utterances from 

only one speaker. Since no prior information regarding the 

speakers involved and the speaker population size is available in 

most practical applications, solving the speaker-clustering problem 

usually involves characterizing the voice similarities between 

utterances, generating clusters based on those similarities, and 

determining the optimal number of clusters. 

Currently, the most popular method of speaker clustering 

generates a cluster tree by sequentially merging the utterances 

deemed similar to each other, and then cuts the tree via a Bayesian 

information criterion (BIC) [5,8,10-12,15], in order to retain an 

appropriate number of clusters. During the agglomeration 

procedure, the nearest neighborhood selection rule is usually 

employed in an attempt to maximize the similarities between all 

the utterances within each cluster. Since the interaction between 

clusters is not considered, this method can only make each 

individual cluster as homogeneous as possible; however it cannot 

guarantee that the homogeneity for all the clusters can finally be 

summed to reach a maximum. In particular, mis-clustering errors 

arising from grouping different-speaker utterances together can 

propagate down the whole process, and hence limit the clustering 

performance. In addition, the cluster tree is generated separately 

from the determination of the optimal number of clusters. Since the 

latter trusts the former completely, the inevitable errors from the 

former can propagate to the latter, which may lead to a poor 

estimation of the speaker population size. 

To overcome the above-mentioned limitations of the 

conventional method, we propose a new clustering method that 

jointly optimizes the generated clusters and the number of clusters 

by estimating and minimizing a metric called the Rand index 

[16,17]. This metric indicates the clustering errors that place 

utterances from the same speaker in different clusters, or place 

utterances from different speakers in the same cluster. We 

approximate the Rand index by a function of the similarity 

measures between utterances, and employ the genetic algorithm 

[18] to determine the cluster where each utterance should be 

located. The resulting clusters are thus optimized in a global 

fashion, rather than a pair-by-pair manner used in the conventional 

method. In addition, by exploiting a characteristic of the Rand 

index that it only reaches the minimal value when the number of 

clusters equals the true speaker population size, speaker clustering 

based on the minimization of the estimated Rand index also 

enables the resulting number of clusters to approach the optimum. 

2. PROBLEM FORMULATION 

For convenience of discussion, we begin by defining the following 

symbols. 

X1, X2,…, XN : N speech utterances to be clustered; 

s1, s2,…, sP : P unknown speakers involved in N utterances; 

c1, c2,…, cM : M clusters to be generated; 

on : index of the speaker producing utterance Xn;

hn : index of the cluster that utterance Xn is assigned to; 

nm  : number of utterances in cm;

n p : number of utterances spoken by sp;

nmp : number of utterances in cm spoken by sp.

The goal of speaker clustering is to produce a set of indices H =

{h1, h2, …, hN} that satisfy  hi = hj for any Xi and Xj from the same 

speaker, and hi  hj for any Xi and Xj from different speakers. 

Depending on the application, there are a number of ways to 

evaluate the performance of speaker clustering. This study uses 

two metrics: cluster purity [4] and the Rand index [4,16,17]. 

Cluster purity represents the probability that if we pick any 

utterance from a cluster twice at random, with replacement, both of 
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the selected utterances will be from the same speaker. Specifically, 

the average purity for M clusters is computed by 
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Apparently, a perfect clustering should produce an average purity 

of one. However, this does not work both ways. The value of the 

average purity generally increases as the number of clusters 

increases, since the metric does not consider errors that place 

utterances from the same speaker in different clusters. Hence, the 

cluster purity is only suitable for comparing the performance of 

different clustering methods under a specified number of clusters 

In contrast, the Rand index indicates the number of utterance 

pairs from the same speaker that are in different clusters, or from 

different speakers that are in the same cluster. Specifically, the 

Rand index is computed by 
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Obviously, the smaller the value of R(M),  the better the clustering 

performance will be. Unlike the cluster purity, which favors a large 

value of M, the Rand index generally decreases with an increase in 

the value of M initially, and reaches the minimum at M = P. When 

M > P, the Rand index starts to increase as the value of M

increases. 

To illustrate why the minimal value of R(M) occurs only at M

= P, let us consider the following cases.  

(i) The clustering is perfect, which satisfies 
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where ni = n*i = ni*, 1 i P. Then, the resulting Rand index is 
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(ii) Let M = P + 1, and modify Eq. (4) by splitting cluster ck into 

two clusters, ck and cP+1, i.e., 
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where nkk + n(P+1)k = nk. Then, the resulting Rand index is 
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(iii) Let M = P  1, and modify Eq. (4) by merging cluster cP into 

cluster ck, i.e., 
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Then, the resulting Rand index is 
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We observe from these three cases that, in general, R(M) > R(P) if 

M P. Therefore, the Rand index can be used not only to examine 

if each generated cluster is homogeneous in terms of the speaker, 

but also to serve as a criterion to determine the true speaker 

population size. This property motivates us to develop a clustering 

method that jointly optimizes the generated clusters and the 

number of clusters by estimating and minimizing the Rand index.  

3. MINIMUM RAND INDEX CLUSTERING (MRIC) 

Our basic strategy is to find a set of indices H(M) = {h1
(M), h2

(M), …, 

hN
(M)} for the N utterances to be clustered, such that the resulting 

Rand index is minimized, where hi
(M), 1 i N, is an integer 

between 1 and M, and the value of M is to be determined. Since in 

Eq. (3) 
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and P
p=1n*p

2   =   is a constant that is irrelevant to the clustering, 

the optimal set of cluster indices can be determined by 
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,),(),(2),()(ˆ

1 1

)()(

1 1

)()()(
N

i

N

j

ji

M

j

M

i

N

i

N

j

M

j

M

i

M oohhhhR H

(13)

where ( ) in Eqs. (10) (13) is a Kronecker Delta function.

However, as the computation of (oi, oj) requires that the true 

speaker of each utterance be known in advance, it is impossible to 

find H  directly from Eqs. (12) and (13). To solve this problem, we 

propose estimating (oi, oj) by means of the similarity measure 

between Xi and Xj. Specifically, 
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where S(Xi, Xj) denotes a certain similarity measure between Xi

and Xj that could be either positive or negative, but cannot be zero, 

and Smax is the maximum among the similarities S(Xi, Xj), i j.

In our implementation, S(Xi, Xj) is computed by the generalized 

likelihood ratio (GLR) [1,4]: 

S(Xi, Xj) = logPr(Xij | ij)  logPr(Xi | i)  logPr(Xj | j),      (15) 

where  Xij is the concatenation of Xi and Xj, and i, j, and ij are 

parametric models trained using Xi, Xj, and Xij, respectively. 

Using this estimation, we can solve Eq. (12) by further assigning 

to  an arbitrary positive constant that ensures .0)(ˆ )(MR H

Given that neither a gradient-based optimization method nor an 

exhaustive search is applicable in this scenario, we propose using 

the genetic algorithm (GA) [18] to find H  by virtue of its global 

scope and parallel searching power. The basic operation of the GA 

is to explore a given search space in parallel by means of iterative 

modifications of a population of chromosomes. Each chromosome, 

encoded as a string of alphabets or real numbers called genes, 

represents a potential solution to a given problem. In our task, a 

chromosome is exactly a legitimate H(M), and a gene corresponds 

to a cluster index associated with an utterance. However, since the 

index of one cluster can be interchanged with that of another 

cluster, multiple chromosomes may amount to an identical 

clustering result. For example, the chromosomes {1 1 1 2 2 3 3}, 

{1 1 1 3 3 2 2}, {2 2 2 1 1 3 3}, and {1 1 1 5 5 4 4} represent the 

same clustering result derived by grouping seven utterances into 

three clusters. Such a non-unique representation of the solution 

would significantly increase the GA search space, and may lead to 

an inferior clustering result. To avoid this problem, we limit the 

inventory of chromosomes to conform to a baseform 

representation defined as follows.

Let I (cm) be the lowest index of the utterance in cluster cm.

Then, a chromosome is a baseform  

iff cm, cl  { }, if m < l, then I (cm) < I (cl),   (16) 

where { } indicates that a cluster does not contain any utterance. 

Among the above chromosomes, {1 1 1 2 2 3 3} is a baseform, 

since the lowest index of the utterance in clusters c1, c2, and c3 is 1, 

4, and 6, respectively, which satisfies Eq. (16). In contrast, 

chromosomes {1 1 1 3 3 2 2} and {2 2 2 1 1 3 3} are not 

baseforms, since the lowest index of the utterance in clusters c1, c2,

and c3 does not satisfy Eq. (16). In addition, chromosome {1 1 1 5 

5 4 4} implies that clusters c2 and c3 do not contains any utterance; 

hence it is not a baseform, either. However, it is conceivable that 

all the non-baseform chromosomes can be converted into a unique 

baseform representation by re-arranging the cluster indices. 

GA optimization starts with a random generation of 

chromosomes according to a certain population size, Z. Then, the 

fitness of all chromosomes is evaluated via the inverse of the 

estimated Rand index, i.e., )(ˆ1)( )()( MM RF HH . Based on this 

evaluation, a particular group of chromosomes is selected from the 

population to generate offspring by subsequent recombination. To 

prevent premature convergence of the population, the selection is 

performed with the linear ranking scheme described in [19]. Next, 

crossover among the selected chromosomes proceeds by 

exchanging the substrings of two chromosomes between two 

randomly selected crossover points. A crossover probability is 

assigned to control the number of offspring produced in each 

generation. After crossover, a mutation operator is used to 

introduce random variations into the genetic structure of the 

chromosomes. This is done by generating a random number and 

then replacing one gene of an existing chromosome with a 

mutation probability. The resulting chromosomes that do not 

conform to the baseform representations are converted into their 

baseform counterparts.  

The procedure of fitness evaluation, selection, crossover, and 

mutation is repeated continuously, in the hope that the overall 

fitness of the population will increase from generation to 

generation. When the maximum number of generations is reached, 

the best chromosome in the final population is taken as the 

solution, H
*. Note that the estimated speaker population size can 

be obtained by selecting the maximal value of the cluster index in 

H
*. For example, if H* = {1 2 1 3 4 3 1}, the estimated number of 

speakers in a seven-utterance collection is 4. 

4. EXPERIMENTAL RESULTS 

The speech data used in this study consisted of six excerpts of 

broadcasts from the evaluation set of the 2002 Rich Transcription 

Broadcast News and Conversational Telephone Speech Corpus

[20]. Each excerpt was segmented into speaker-homogeneous 

utterances, according to the annotation files in the corpus. Speaker 

clustering was then applied to each excerpt separately. Prior to the 

experiments, every speech utterance was converted from its digital 

waveform representation into a sequence of feature vectors, each 

of which consisted of 12 Mel-scale frequency cepstral coefficients 

(MFCCs) and 12 delta MFCCs. Then, the similarities between the 

utterances were computed using Eq. (15), in which all the 

parametric models are of a uni-Gaussian model with a full 

covariance matrix. 

In GA optimization, the parameter values used for the 

maximum number of generations, the population size, the 

crossover probability, and the mutation probability were 

empirically determined to be 2000, 5000, 0.5, and 0.1, 

respectively. For the performance comparison, we also 

implemented a baseline speaker-clustering system based on 

hierarchical agglomerative clustering (HAC) in conjunction with 

the Bayesian information criterion (BIC) to determine the optimal 

number of clusters [5]. In the agglomeration procedure, the 

similarities between clusters were computed using the complete 

linkage of the GLR-based inter-utterance similarities. In addition, 

in using the BIC, the penalty weight was set to one. 

Table 1 shows the speaker-clustering results. First, we 

evaluated the performance of the proposed minimum Rand index 

clustering (MRIC) by specifying the number of clusters a priori as 

the true number of speakers. This served as an upper bound of the 

performance that could be achieved by the automatic 
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determination of the speaker population size. We can see from 

Table 1 that MRIC consistently yielded larger values of purity and 

smaller values of the Rand index compared with the baseline HAC 

method. This shows the superiority of global optimization applied 

in MRIC over pairwise optimization used in HAC.  

Next, we examined the speaker-clustering performance of 

both systems under the practical condition that the true speaker 

population size is unknown and must be estimated. It can be seen 

from Table 1 that the number of speakers estimated by MRIC for 

each excerpt was very close to the true speaker population size. It 

is also clear that, for the estimated speaker population sizes, 

MRIC consistently yielded smaller values of the Rand index 

compared with the baseline system. Some of the values were even 

smaller than the counterparts obtained by specifying the true 

speaker population sizes in the baseline system. The results 

confirm the validity of the proposed method. 

5. CONCLUSIONS

We have investigated techniques for clustering speech data, 

whereby utterances from the same speaker can be grouped into a 

single cluster. This requirement is formulated as a problem of 

estimating and minimizing the clustering errors characterized by 

the Rand index. We represent the Rand index as a function of the 

inter-utterance similarities and apply the genetic algorithm to 

determine the index of the cluster where each utterance should be 

located. As a result, we have demonstrated a noticeable 

improvement in the speaker-clustering performance, compared to 

the conventional method based on hierarchical agglomerative 

clustering and the Bayesian information criterion for the estimation 

of the speaker population size.
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Table 1: Speaker-clustering results. 

# Clusters = True # Speakers # Clusters = Estimated # Speakers  

Baseline Method 

(HAC)

Proposed Method 

(MRIC)

Baseline Method 

(HAC-BIC)

Proposed Method 

(MRIC)Excerpt
#

Utterances 

True # 

Speakers 

Purity 
Rand

Index
Purity 

Rand

Index

Estimated 

# Speakers

Rand

Index

Estimated 

# Speakers

Rand

Index

bn02en_1 44 16 0.89 80 0.93 41 8 100 17 56

bn02en_2 29 9 0.94 24 0.95 16 13 52 11 20

bn02en_3 13 6 1.00 0 1.00 0 6 0 6 0

bn02en_4 43 16 0.90 84 0.91 77 18 98 15 80

bn02en_5 26 10 0.72 78 0.76 72 11 80 11 75

bn02en_6 45 14 0.86 66 0.88 58 15 136 15 87
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