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ABSTRACT

Speaker adaptation is commonly used to compensate speaker varia-
tion in large vocabulary continuous speech recognition. In a multi-
speaker environment where speakers change frequently speaker seg-
regation is needed to divide the input audio stream to speaker turns.
Speaker turns de ne the current speaker at each time and speaker
adaptation can thus be done based on speaker turns. The novelty of
this paper is that the speaker-speci c transformations are estimated
incrementally and in tandem with speaker segregation. Therefore
we need a transformation that can be reliably estimated based on
one speaker turn alone. We propose the constrained maximum like-
lihood linear regression (CMLLR) for this. In testing with Finnish
TV news audio, speaker adaptation reduced the average letter error
rate 25 % relative to baseline.

Index Terms— speaker recognition, speech recognition

1. INTRODUCTION

Variation introduced by different speakers and changing environ-
ments is still a challenge in large vocabulary continuous speech re-
cognition. A number of speaker adaptation techniques have been
developed to handle the consequent mismatch between training and
testing conditions. However, in order to use speaker adaptation,
speakers must be known. We do not need to know speaker iden-
tities, to be exact, but it is important that we know when speakers
change and if some have spoken several times. In an application
where speakers change frequently and new speakers appear, such
information is not often available. Segregation of speakers is then
needed before applying speaker adaptation to the data.

Speaker segregation aims at dividing the input audio to speaker
turns. Each turn can be associated with one speaker whereas speak-
ers can have many turns. Given no prior information on speakers,
the task is to nd speaker change boundaries that divide the audio
to speaker turns and then label the speaker turns correctly. Speaker
segregation is also an essential part in many speech technology ap-
plications. Important applications include retrieval and browsing of
large automatically transcribed audio les and the analysis of spoken
dialogs and multi-party meetings.

Speaker changes are found using a distance measure that illus-
trates the dissimilarity between two speech segments. Distance mea-
sures include divergence shape distance often used with line spectral
pair (LSP) features [1] and distance measures based on generalized
likelihood ratio [2, 3]. Distance measures may also be used as sim-
ilarity measures in speaker clustering [1, 2]. This is one option for

nding the speaker labels.
In [4] speaker labels are found by decoding each input utterance

against a speaker-independent model and speaker-dependent models
created with speaker adaptation. Maximum likelihood model is then
selected and if this is the speaker-independent model, a new adapted

model is created. Speaker-dependent model would be updated. Last,
the utterance is re-decoded with the new adapted model.

The original contribution of this paper is to use a likelihood ratio
based distance measure to nd possible speaker change boundaries
and to propose a new speaker tracking method for setting the speaker
labels. The speaker tracking method presented in this paper dif-
fers from that proposed in [4] in that we take advantage of speaker-
speci c feature transformations and instead of decoding the input au-
dio several times we calculate the likelihoods using a state sequence
hypothesis and features generated with speaker-independent model.
The transformations are estimated with constrained maximum like-
lihood linear regression (CMLLR) [5].

2. SPEAKER ADAPTATION

Linear transformations are a common choice for speaker adaptation,
because they need only a modest amount of adaptation data to per-
form well even with large model sets. A limiting factor is that most
transformation methods are model-based. In a multi-speaker envi-
ronment it would be better if we did not need to create a new adapted
model for each speaker.

CMLLR is a model-space transformation, but it assumes the
model means and the covariances are adapted with the same transfor-
mation matrix [5]. With this assumption, adaptation can be done in
the feature space rather than model space. Features are transformed
as

ô(τ) = Ao(τ) + b = Wζ(τ), (1)
where A is the transformation matrix and b the constant bias, W

is the extended transformation matrix W = [b′ A′]′ and ζ(τ) =
[1 o(τ)′]′ is the extended observation vector at time τ .

The maximum likelihood solution for i-th row in W is [5]

wi = (αpi + k(i))G(i)−1, (2)

where pi is the extended cofactor vector pi = [ 0 ci1 . . . cin] (cij =
cof(Aij)) and n is the feature dimension. Factor α is solved from a
quadratic equation presented in [5]. G(i) and k(i) are calculated as

G(i) =
TX

τ=1

ζ(τ)ζ(τ)′
KX

k=1

1

σk(i)2
γk(τ) (3)

k(i) =
TX

τ=1

ζ(τ)′
KX

k=1

1

σk(i)2
μk(i)γk(τ), (4)

where μk(i) and σk(i)2 denote the i-th component of mean and vari-
ance of Gaussian k and γk(τ) is the posterior probability of being in
Gaussian k at time τ . The beauty is that G(i) and k(i) can be calcu-
lated incrementally as more data becomes available. With speaker-
speci c G(i) and k(i) information extracted from a new utterance
can be merged with information from all the previous utterances that
share the same speaker.
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Fig. 1. Moving windows positioned to test for speaker change at
hypothesized phone boundaries at times t and t”.

3. SPEAKER SEGREGATION

Speaker segregation as described here assumes we have no prior in-
formation on speaker turns. Speaker change detection (SCD) is used
to nd the speaker change boundaries and speaker tracking to label
the speaker segmented audio. In our approach, also the transfor-
mation matrices for speaker adaptation are estimated during speaker
tracking.

3.1. Speaker change detection

Features extracted from speech signal characterize both the speech
and the speaker. However, features collected from more than a few
seconds of speech are expected to ll the feature space in a way that
depends primarily on the speaker [6]. Speaker changes are thus de-
tected using a pair of moving windows both which hold a short seg-
ment of speech (Figure 1). Distance between the speech segments
is calculated to determine whether there exists a speaker change in
between the windows. Minimum window size is set to 5.6 seconds.
Window sizes are not constant, for windows move according to hy-
pothesized phone boundaries. The phone level time resolution was
proposed in [3].

Assuming we have two speech segments with the set of features
X = {xn} and Y = {ym} and we need to know if they were
uttered by the same speaker, we wish to test the hypothesis:

H0: X and Y are generated by the same speaker
H1: X and Y are generated by different speakers
Taking X and Y as coming from independent Gaussian pro-

cesses, we may test our hypothesis using the generalized likelihood
ratio test [2]

λ =
L(X, Y | μ̂, Σ̂)

L(X | μ̂X , Σ̂X) L(Y | μ̂Y , Σ̂Y )
, (5)

where μ̂ and Σ̂ are the maximum likelihood estimates calculated for
mean and covariance from features in X and Y . The generalized
likelihood ratio is always greater than zero and less than unity, so the
distance between speech segments is then de ned as

d = − log λ. (6)

The distance is calculated as [2]

d=
1

2
[N log |SX |+M log |SY |−(N+M) log |SX,Y |] , (7)

where S are the sample covariance matrices calculated from features
and N , M are the number of features in X and Y , respectively.

Note, that the distance depends on both the mean and covariance
estimates. To test the similarity between the covariances only, as
suggested in [1, 2], the sample covariance matrix SX,Y should be
replaced with (N SX + M SY )/(N + M).

Distance is calculated at phone boundaries and a threshold is
used to detect speaker changes — or rather speaker change intervals.
Such interval is seen to begin when the distance surpasses thresh-
old value, and end when the distance drops down again. Speaker
change boundaries are then placed where the distance met its maxi-
mum value within an interval. This should prevent us from detecting
multiple change boundaries where one speaker change occurs.

3.2. Speaker tracking

The speaker tracking method presented here is based on the assump-
tion that each speaker has an optimal adaptive transformation that is
not optimal for any other speaker. Thus, provided that we can get es-
timates close to the optimal transformations, different speakers can
be recognized. Transformations may have to be estimated from rel-
atively small amounts of data, for the average length of speaker turn
in our TV news data is around 30 seconds. Linear transformations do
not generally need a lot of data, so we should do ne with CMLLR.

The method presented in [4] has the same basis, but the speaker
adaptation methods used are all model-based and the input audio
is either decoded against all models that are being considered or a
supplementary speaker model is used for model selection. In our ap-
proach, audio is decoded once with the speaker-independent model
to get a state sequence hypothesis, which is then used to evaluate all
feature transformations. Transformation matrices do not need a lot
of memory space [7] so we can keep a good many of them available
during speaker tracking.

Speaker tracking is carried out as shown in Figure 2. Features
extracted from audio signal are adapted with the transformations es-
timated for previous speakers, if such exist. State information is read
from hypothesis and log-likelihoods are calculated for the features
as [5]

L(o(τ)|μ,Σ,A,b) = lnN (ô(τ)|μ,Σ) +
1

2
ln |A|2, (8)

where ô(τ) are the transformed features and A, b are the transfor-
mation matrix and constant bias. Addition of the term ln |A|2 is due
to effects of adaptation.

Log-likelihoods are summed over time and thus they become
likelihood values for the different transformations. At speaker change
boundary we then nd the highest log-likelihood value. Should this
belong to the speaker-independent model represented by unadapted
features, a new speaker label is created and the feature information
collected from the speaker turn is used to estimate CMLLR transfor-
mation for the new speaker. If instead the maximum likelihood fea-
tures were produced with a speaker-dependent transformation, the
feature information is merged with previously collected information
(see Section 2) and new transformation is estimated for this speaker.
Speaker turns are also labeled accordingly.

Sometimes a transformation estimated for one speaker can also
help another. This would result to both speakers being labeled the
same. To handle this problem we added a threshold to accepting the
decision made in comparing the likelihoods: if the ratio between the
likelihood value calculated for unadapted features and the highest
speaker adapted likelihood value does not surpass a given threshold,
we take it that the selected transformation would not signi cantly
bene t our current speaker and we decide we have a new speaker.
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Fig. 2. Speaker tracking labels the given speaker turns and incre-
mentally estimates CMLLR transformations for speaker adaptation.

4. SYSTEM AND DATA

Our large vocabulary continuous speech recognition system uses a
morph-based growing n-gram language model [8, 9] trained on book
and newspaper data. Text data contains 145 million words. Since all
words and word forms can be represented with morphs, we have an
unlimited decoding vocabulary. Our decoder is an ef cient time-
synchronous beam-pruned Viterbi token-pass system [10].

For acoustic modeling we have state-clustered hidden Markov
triphone models constructed with a decision-tree method [11]. Each
state is modeled with 8 Gaussians and states are also associated
with gamma probability functions to model the state durations [12].
Speech signal is represented with 12 MFCC and the log-energy along
with their rst and second differentials. Features are treated with
cepstral mean subtraction and maximum likelihood linear transfor-
mation that is estimated in training.

Models were trained with data taken from the Finnish SPEECON
database [13]. The selected training data set had 26 hours of clean
speech data recorded with close-talk microphone from 208 speakers
both male and female. Among utterances were words, sentences and
free speech.

System is tested with a set of speech clips taken from the Finnish
Broadcasting Company (YLE) evening news. We chose 48 speech
clips from 7 TV news broadcasts to the test set. The complete test set
had around one hour of speech data from 49 speakers. This test set
could be divided to 153 speaker turns. For parameter optimization
we had a small set of speech clips taken from a separate TV news
broadcast. This set had 10 minutes of speech data from 9 speakers
one of which is also present in the test set. All speech clips were
selected to contain only planned speech from newscasters and re-
porters. Background music and other noise is present in some parts.

In Finnish, speech recognition performance is best measured
with letter error rate (LER). Word error rate (WER) is more common
in speech recognition measurements, but it is not well applicable for
Finnish where words tend to be rather long. Finnish words often
correspond to more than one English words and constitute of several
concatenated morphemes like “kahvin+juoja+lle+kin” which means
“also for a coffee drinker”.

5. RESULTS

Speaker adaptation is tested under three different conditions. First,
the speaker-speci c CMLLR transformations are estimated based on
true speaker turns (a). Then, in order to test speaker tracking alone,
system is given the true speaker change boundaries but no informa-
tion about the speakers (b). In speaker tracking, the given turns are
labeled and speaker-speci c transformations are estimated based on
this labeling. Last, system is not given any information on speaker
turns (c), but speaker change boundaries are searched with speaker
change detection. This divides the audio to supposed speaker turns
that are then labeled and used in estimating the speaker-speci c trans-
formations. In all three cases, audio is re-decoded after we have the
transformations. Results are presented in Table 1.

Table 1. Speech recognition performance.
WER LER

Baseline 23.0 7.9

Speaker adaptation

(a) true speaker turns 19.8 6.0

(b) speaker tracking 19.5 5.9

(c) SCD + tracking 19.4 5.9

Speaker adaptation signi cantly improves the recognition re-
sults. With true speaker turns (a) the relative error reduction is 24 %.
Results from speaker segregation and adaptation experiments are
even better. Compared to baseline, the relative error reduction is
25 % in experiments (b) and (c).

It is evident from the results in Table 1 that our speaker segre-
gation method can provide a good basis for speaker adaptation. The
small difference in results (b) and (c) compared to (a) indicates that
the automatic methods lead to at least as low error rate as the manu-
ally marked speaker turns. They do make some mistakes in speaker
segregation, but from speaker adaptation point of view these are, at
least on average, better decisions. A similar difference was marked
in [4] where speaker tracking was tested with data manually seg-
mented to sentences. Note here, that the results in Table 1 indicate
our speaker tracking method works ne with both true and detected
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speaker change boundaries, even if speaker change detection creates
quite a many false boundaries that make the detected speaker turns
shorter than they really are, leaving less data for speaker tracking.

The results from speaker segregation were also compared to the
true speaker turns, so that the results could be evaluated in isolation
from speaker adaptation. Speaker change detection performance is
evaluated on the SCD evaluation metrics suggested in [3]. With 0.5 s
tolerance factor the results are good. False acceptance is 51 % and
false rejection is 16 %. Thus, there are many false speaker change
boundaries, but also most true changes were found. False boundaries
are not so critical in this task because the speaker tracking phase
often clears them. After speaker tracking, we have false acceptance
26 % and false rejection 17 %.

Success in speaker tracking can be measured also with average
cluster purity (acp) and average speaker purity (asp) measures [14].
Our proposed speaker tracking method succeeded remarkably well
when given the true change boundaries: average cluster purity is
97 % and average speaker purity 95 %. Thus, the speaker turns that
get the same label are most often from the same speaker, and the
turns from one speaker most often have a common label.

Speaker tracking performance decreases slightly when we re-
place the true change boundaries with detected speaker changes.
Now, we have average cluster purity 96 % and average speaker pu-
rity 84 %. Again, speakers do not share labels, but this time not all
the speech from one speaker has been labeled the same. 56 speakers
were found in speaker tracking, whereas 49 were found when sys-
tem had the true change boundaries. This is also the true number
of speakers. However, most extra labels have been assigned to short
speaker turns that speaker change detection tends to create around
noise. Having them labeled as new speakers is probably good from
speaker adaptation perspective.

Finally, average cluster and speaker purity give also means to ex-
amine how thresholding the likelihood values affected speaker track-
ing. We had the threshold so that there should be at least 10 % differ-
ence in likelihood values for the speaker-dependent transformation
to be selected. Most often the difference is over 15 % if the trans-
formation is correct and should be selected, and less than 5 % if not.
With the threshold removed, we get acp 69 % and asp 99 % when
system is given the true change boundaries. Similarly, we get acp
66 % and asp 97 % with detected speaker changes. There are now
less speaker labels than true speakers and several speakers have been
given the same label.

6. CONCLUSIONS

Methods for segregating speech from different speakers in TV news
audio were described and tested along with speaker adaptation. We
used the generalized likelihood ratio test [2] for speaker change de-
tection and for speaker tracking we suggested a method that labels
the given speaker turns and equips each speaker with a CMLLR
transformation. Transformations are estimated incrementally and are
based on all the data belonging to their respective speaker label.

The suggested method is related to that proposed in [4] although
some key features are different. The differences are that we have
feature transformations and we calculate transformation likelihoods
based on state sequence hypothesis generated with the baseline
speaker-independent model. We save all estimated transformations
and do speaker adaptation of ine. As we also test several transfor-
mations for each speaker turn, we utilize thresholding in transforma-
tion selection.

Test results denote that speaker segregation and speaker adapta-
tion signi cantly improve system performance in speech recognition

task. The proposed speaker segregation method is most worthwhile
when followed by speaker adaptation because it directly provides
the speaker-speci c transformations. Speech recognition results also
suggest that speaker adaptation may actually bene t from automatic
segregation. However, our speaker segregation method suits also
other purposes, for it did well in correctly partitioning and labeling
the speech data.
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