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ABSTRACT

We propose a method for the joint estimation of formant tra-

jectories from spectrograms. Formants are enhanced in the

spectrograms obtained from the application of a Gammatone

filterbank via a smoothing along the frequency axis. In con-

trast to previously published approaches, the used tracking

algorithm relies on the joint distribution of formants rather

than using independent tracker instances. More precisely,

Bayesian mixture filtering in conjunction with adaptive fre-

quency range segmentation as well as Bayesian smoothing

are used. The algorithm was evaluated on a publicly avail-

able database containing hand-labeled formant tracks. Exper-

imental results show a significant performance improvement

compared to a state of the art approach.

Index Terms— Speech processing, Bayes procedures,

Tracking, Adaptive estimation, Dynamic programming

1. INTRODUCTION

Communication via speech is a key aspect in human-machine

interaction. Current speech recognition system work well in

idealized environments, but performance significantly drops

when environments are characterized by variability. Recogni-

tion particularly becomes difficult for speech degraded due to

large speaker-microphone distances and noise as in the inter-

action with a humanoid robot like Honda’s ASIMO.

In contrast, humans perform marvelously well under such

conditions. Designing a system based on findings on the func-

tional principles of the human auditory system may lead a

way to overcome the problems of state of the art systems.

It is well known that human speech perception relies to a

large extend on formant trajectories. Consequently, we pro-

pose a method for extracting formants which might ultimately

be more robust to distortions than common feature extraction

methods. As shown in Fig. 1, the method involves a biologi-

cally inspired preprocessing for the enhancement of formants

in spectrograms and a subsequent noise robust tracking via a

Bayesian framework in order to extract formant trajectories.

The results obtained on a large database with hand-labeled

formant trajectories given in the final part of the paper show

a significant improvement compared to a state of the art ap-

proach.
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Fig. 1. The architecture of the formant estimation system.

2. FORMANT ENHANCEMENT

Firstly, the speech signal is transformed into the spectro-

temporal domain by the application of a Gammatone filter-

bank with 128 channels covering the frequency range from

80 Hz to 8 kHz. Furthermore, the envelope of the filter re-

sponses is calculated via rectification and low-pass filtering.

According to Fant’s linear source-filter theory speech is

produced by a non-linear volume velocity source exciting a

time-varying linear filter as well as radiation components.

Thus, eliminating the spectral influence of excitation and ra-

diation will significantly improve the extraction of formants

from spectrograms.

At least for voiced sounds, the primary source is gener-

ated by the vibrating vocal folds converting the subpharyn-

geal steady airflow into a quasi-periodic train of flow pulses.

In case of most common modal or creaky phonation a second-

order low-pass filter can approximate the glottal flow spec-

trum [1],[2]. Hence, the glottal spectrum shows a monotoni-

cally decreasing characteristic of -12 dB/oct.

The principle opening from which speech is radiated is

the mouth. A first-order high-pass filter approximates the re-

lationship of lip volume velocity and sound pressure received

at some distance [3]. For this reason, we model the spec-

tral characteristics of the voiced excitation with a drop of -6

dB/oct and correct it via inverse filtering.
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After this preemphasis is achieved, formants can be ex-

tracted by smoothing along the frequency axis which causes

the harmonics to spread and form peaks at formant locations.

Therefore a Laplacian kernel was used, where the kernel size

was adjusted to the logarithmic arrangement of the Gamma-

tone filterbank’s channel center frequencies. This results in a

constant kernel size on a linear frequency scale. Addition-

ally, the filter responses were divided by the maximum at

each sample so that formants become visible in signal parts

with relatively low energy. A further contrast enhancement is

achieved via a sigmoidal function.

3. FORMANT TRACKING

While tracking multiple formants, two general problems

arise: Formant locations have to be estimated based on noisy

observations and a data association problem has to be solved.

That is, due to measurements being unlabeled, their alloca-

tion to one of the formants is a crucial step in order to break

up ambiguities. In the case of tracking formants, focusing

on one target yields only inferior results. Rather one has to

consider the joint distribution of targets in conjunction with

continuity constraints and target interactions.

Bayes filters offer an excellent framework for the nec-

essary joint tracking. They represent the state at time t by

random variables xt, whereas uncertainty is introduced by a

probabilistic distribution over xt, called the belief Bel(xt).
Their purpose is the sequential estimation of such beliefs over

the state space conditioned on all information contained in the

sensor data zt [4]:

Bel(xt) = p(xt|z1, z2, . . . , zt) (1)

Let Bel−(xt) denote the predicted belief at time t which

is corrected according to the preprocessed spectral energy

distribution p(zt|xt) and normalized by α, then the standard

Bayes filter recursion can be written as follows:

Bel−(xt) =

∫
p(xt|xt−1) · Bel(xt−1) dxt−1 (2)

Bel(xt) = α · p(zt|xt) · Bel−(xt) (3)

One crucial requirement for tracking multiple formants is

the maintenance of multimodality. Standard Bayes filters al-

low the pursuit of multiple hypotheses. Nevertheless, in prac-

tical implementations these filters can maintain multimodality

only over a defined time-window. Longer durations cause the

belief to migrate to one of the modes, subsequently discard-

ing all other modes. Thus, the standard Bayes filters are not

suitable for the joint estimation of formants. In order to avoid

this problem the mixture filtering technique [5] was adopted.

The key issue of this approach is the formulation of the joint

distribution Bel(xt) through a non-parametric mixture of M

component beliefs Belm(xt) with associated weights πm,t,

so that each target is covered by one mixture component:

Bel(xt) =
M∑

m=1

πm,t · Belm(xt) (4)

Hence, the two-stage standard Bayes recursion can be re-

formulated with respect to the mixture modeling approach.

Furthermore, since the application of the Gammatone filter-

bank already discretized the frequency domain, a grid-based

approximation will be an adequate belief representation. As-

suming N filter channels are used, the state space can be writ-

ten as X = {x1, x2, . . . , xN}. Thus, the resulting prediction

and update formulas are:

Bel−(xk,t)=
M∑

m=1

πm,t−1 · Bel−m(xk,t) (5)

Bel(xk,t)=

M∑
m=1

πm,t · Belm(xk,t) (6)

Bel−m(xk,t)=
N∑

l=1

p(xk,t|xl,t−1)Belm(xl,t−1) (7)

Belm(xk,t)=
p(zt|xk,t)Bel−m(xk,t)∑N

l=1 p(zt|xl,t)Bel−m(xl,t)
(8)

πm,t=
πm,t−1

∑N

k=1 p(zt|xk,t)Bel−m(xk,t)∑M

n=1 πn,t−1

∑N

l=1 p(zt|xl,t)Bel−n (xl,t)
(9)

Consequently, the new belief can be obtained straightfor-

wardly by independently computing the belief of each compo-

nent. An interaction of mixture components only takes place

during the calculation of the new mixture weights.

However, the more timesteps would be computed the

more diffuse component beliefs would become. Thus, from

time to time a procedure for merging, splitting, and recluster-

ing components has to be applied. Assuming such a function

exists and returns sets R1, R2, . . . , RM ′ which divide the fre-

quency range into contiguous formant-specific regions, then

the belief can be recomputed, so that the mixture approxima-

tion of Eq. (4) before and after the reclustering procedure are

equal in distribution. Furthermore, the probabilistic charac-

ter of mixture weights as well as component beliefs is main-

tained, since both still sum up to 1. This is achieved by up-

dating the mixture weights according to Eq. (10) and recalcu-

lating the beliefs according to Eq. (11).

π′m,t=
∑

xk,t∈Rm

M∑
n=1

πn,t · Beln(xk,t) (10)

Bel′m(xk,t)=

{ P
M
n=1

πn,t·Beln(xk,t)

π′

m,t
, ∀xk,t ∈ Rm

0 , ∀xk,t �∈ Rm

(11)

In this way, previously overlapping beliefs are separated

via rearranging their component affiliation depending on the

mixture weights. Furthermore, mixture weights change ac-

cording to the amount of beliefs a component gave off and

got. This results in a mixture of consecutive but separated

components by which multimodality is preserved.

In order to find optimum component boundaries a new

variable x
(m)
k,t encoding the assignment of state xk to compo-

nent m at time t is introduced. Therewith the trellis shown

IV ­ 478



…… …

   

States

C
o
m

p
o
n
en

ts ..
.

...

..

.

..

.

..

.

Fig. 2. The trellis used for frequency range segmentation.

in Fig. 2 can be build. By stipulating that x
(m)
k,t becomes true

only if it’s corresponding node is part of a path from the lower

left to the upper right all possible frequency range segmenta-

tions are considered by the trellis. Thus, optimum component

boundaries can be found by calculating the most likely path.

What remains is an appropriate choice of node and transition

probabilities. Here the following formula was used:

p(x
(m)
k,t ) = pm(xk,0) · Belm(xk,t) (12)

Since the belief represents the past segmentation updated

according to the Bayesian filtering recursion, this formula ap-

plies a data-driven segment continuity constraint. Further-

more, the a priori probability density function (pdf) antago-

nizes segment degeneration by application of long-term con-

straints. The transition probabilities can not easily be ob-

tained. Thus, they were set to an empirically chosen value

of 0.5. Finally, the most likely path can be computed by the

Viterbi algorithm.

Having such an algorithm for finding optimum compo-

nent boundaries at hand, we are able to apply the Bayesian

mixture filtering technique. This method does not just yield

the filtering distribution, it rather adaptively divides the fre-

quency range into formant-specific segments represented by

mixture components. Thus, any further processing can be re-

stricted to these segments.

Uncertainties already included in spectrograms can not be

completely resolved by Bayesian filtering. They rather result

in diffuse beliefs at these locations. This limit is reasonable,

because Bayes filters rely on the assumption of the underlying

process to be Markovian. Thus, the beliefs only depend on

past observations. In order to achieve continuous trajectories

also future observations have to be considered. That is why

the Bayesian smoothing technique was used additionally [6].

Let B̂el(xk,t) denote the belief of xk,t regarding both past

and future observations. Then the smoothed component belief

can be obtained by:

B̂el(xk,t) = p(xk,t|z1, z2, . . . , zt, . . . , zT−1, zT ) (13)

B̂el
−

m(xk,t) =

N∑
l=1

B̂elm(xl,t+1) · p(xl,t+1|xk,t) (14)

B̂elm(xk,t) =
Belm(xk,t) · B̂el

−

m(xk,t)∑N

l=1 Belm(xl,t) · B̂el
−

m(xl,t)
(15)
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Fig. 3. The obtained results for the utterance "Even I occa-

sionally get the Monday blues!" spoken by a male speaker.

The estimated and hand-labeled formant trajectories superim-

posed to the original spectrogram (top) as well as the formant

enhanced spectrogram (bottom) are shown.

This smoothing technique works in a very similar fashion

as the Bayes filters, but in the reverse time direction. It recur-

sively estimates the smoothing distribution based on system

dynamics p(xt+1|xt) as well as previously obtained filtering

distributions Bel(xt). Therewith uncertainties by multiple

hypotheses or diffuse filtering beliefs can be resolved.

What remains is the calculation of exact formant loca-

tions. Since the beliefs obtained are unimodal, this can be eas-

ily done via peak picking, such that the location of the m-th

formant at time t equals the peak location in the smoothing

distribution of component m:

Fm(t) = arg max
xk

[
B̂elm(xk,t)

]
(16)

4. EXPERIMENTAL RESULTS

The experimental setup comprises four mixture components

corresponding to F1-F4. Additionally, one component cov-

ering the frequency range above F4 was used. Each of them

offers gender-dependent Gaussian pdfs which can be immedi-

ately switched according to the decision of a gender detection

system. A block processing based implementation of the sys-

tem was used to make it applicable for an online system.

In order to evaluate the proposed method tests on the

VTR–Formant database [7], a subset of the widely-used

TIMIT corpus [8] with hand-labeled trajectories for F1-F3,

were performed. Thereby we counted a total of 516 utterances

composed of 322 male and 194 female speech sequences, re-

spectively. The results obtained on a typical example drawn

from this database are shown in Fig. 3.

Furthermore, a comparison to a state of the art approach

proposed in [9] was carried out. This method uses a gen-

der detection system, too. For this reason we also used the

algorithm proposed in [9] for detecting gender in order to ob-

tain comparable results. Both algorithms were applied to the
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Fig. 4. The typical algorithm-specific errors shown on the

exemplary phrase "when you always use mine".

complete VTR–Formant database. The estimated tracks were

visually inspected which revealed differences in the character-

istics of the two algorithms. This is illustrated by the example

shown in Fig. 4 where the reader’s focus should be set on F2.

As can be seen, the proposed method almost always cor-

rectly estimates formant locations, but sometimes loses track.

This particularly happens when fast formant transitions be-

tween phonemes occur. In contrast, the method proposed in

[9] works in a much more static fashion by limiting formant

estimation to rigid frequency bands. Hence, it more often

misses exact formant locations but does not achieve such large

relative errors as our method sometimes does. Nevertheless,

we consider the behavior of our method as preferable as it

captures the correct formant position more often.

In the following absolute errors normalized by exact for-

mant locations were calculated at time steps equally spaced

by 10 ms. Segments without speech were excluded from the

calculation of the error. Additionally, we introduced formant-

specific thresholds by which relative errors were bounded.

This technique is motivated by the fact that formant-based

speech recognition systems need precise estimates. Thus,

the impact of an error on the correct formant configuration

estimation is similar if the error was 50 %, 100 % or even

larger. In all cases a confusion with the neighboring formant

is likely and therefore spoils the recognition process. Hence,

the thresholds denote maximum acceptable errors. Errors

above the threshold were set to identical values. The thresh-

olds were set to the standard deviations of formants normal-

ized by the mean formant frequencies which were calculated

from the VTR–Formant database. The therewith obtained re-

sults are summarized in Table 1. Additionally, Table 2 shows

the amount of errors bounded for each algorithm.

These results demonstrate the efficiency of our method. It

consistently outperforms the state of the art approach by an

improvement of up to 15 %. For male speech an even larger

relative improvement of up to 25 % is achieved. Neverthe-

less, some problems regarding female speech were identified

which are caused by the used gender detection system. This

correctly detects male gender by 96 % in contrast to 56 % for

female gender. Thus, the performance of our method will fur-

ther improve when using a more powerful gender detection

system.

proposed method Mustafa [9] relative

formant mean (std) mean (std) improvement

F1 15.62 (10.35) 18.40 (10.57) + 15.11 %

F2 8.28 (7.68) 9.40 (7.87) + 11.96 %

F3 5.75 (4.93) 6.68 (5.00) + 13.86 %

Table 1. The mean and standard deviation of bounded relative

errors (in [%]) obtained via application of both methods.

method F1 F2 F3

proposed method 23.84 % 12.81 % 19.64 %

Mustafa [9] 35.98 % 12.92 % 23.14 %

Table 2. The amount of relative errors bounded.

5. CONCLUSION

In this paper a method for the estimation of formant trajec-

tories was proposed. As preprocessing we suggested the use

of a Gammatone filterbank with subsequent smoothing along

the frequency axis. In contrast to previously published ap-

proaches, the used tracking algorithm relies on the joint dis-

tribution of formants rather than using independent tracker in-

stances for each formant. By doing so, interactions of trajec-

tories were considered which particularly improves the per-

formance when the spectral gap between formants is small.

Experiments showed that the proposed method consistently

outperforms a state of the art approach.

However, until now simplified Gaussian formant dynam-

ics were used. The usage of context-dependent dynamics

covering complex interactions of formants, which might be

learned from data, would be preferable. In this way the ex-

change of beliefs between components could be extended

leading to an improved interaction of them.
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