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ABSTRACT 
 
A new approach for the formant frequency estimation of the 
voiced speech segments in the presence of noise is presented 
in this paper. A correlation model for the voiced speech is 
proposed considering the vocal-tract system as an 
autoregressive moving average (ARMA) model with a 
periodic impulse-train excitation. It is shown that the 
formant frequencies can be directly obtained from the model 
parameters. An adaptive residue-based least-squares 
optimization algorithm is proposed to estimate the model 
parameters, which overcomes the failure of conventional 
correlation based techniques in estimating formant 
frequencies at a low signal-to-noise ratio (SNR). The 
proposed algorithm has been tested on synthetic and natural 
vowels as well as voiced segments of some naturally spoken 
sentences from TIMIT database in presence of white 
Gaussian or babble noises. The experimental results show 
that the proposed method is more robust to noise than some 
existing methods even at a low SNR of 0 dB.  
 

Index Terms— Speech analysis, autoregressive moving 
average processes, formant frequency, correlation model.  

 
1. INTRODUCTION 

 
Formant frequency is one of the most useful speech 
parameters. It has fundamental importance in many speech 
processing applications such as speech synthesis, 
compression, and recognition. Free resonances of a vocal-
tract (VT) system are called formants. Formants are 
associated with peaks in the smoothed power spectrum of 
speech [1]. Among the different formant estimation methods, 
the linear predictive coding (LPC) based methods have 
received considerable attention where the VT system is 
considered as an autoregressive (AR) model [2]. Most of the 
formant frequency estimation methods so far reported deal 
only with noise-free environments [1]-[2]. However, formant 
estimation from noisy speech is very difficult but essential 
as far as practical applications are concerned. In [3], a peak-
picking algorithm is used on a segmented spectrum to 
estimate the formant frequencies in noisy environments. The 
multi-cyclic covariance method, reported in [4], can 

determine the formant frequency from noisy speech at a 
relatively high SNR. Recently in [5], based on an adaptive 
bandpass filterbank (AFB), a formant frequency estimation 
method for noisy speech has been proposed where the 
estimation accuracy depends on the initial estimates.  

In this paper, the formant frequency estimation problem 
under noisy conditions is addressed. Within a short duration 
of time, voiced speech can be considered as the output of an 
ARMA system excited by a periodic impulse-train. Recently 
in [6], we have proposed a correlation model for the output 
of an ARMA system excited by the white noise. In order to 
estimate the formant frequencies, in the current paper, we 
propose a correlation model for the output of an impulse-
train excited ARMA system. Since the proposed correlation 
model provides a direct relationship between the formant 
frequencies and the model parameters, the main task is now 
to estimate accurately the model parameters. Unlike the 
conventional correlation based methods, a correlation-fitting 
approach is proposed where an adaptive residue-based least- 
square (ARBLS) optimization technique is introduced in 
order to obtain an accurate estimate of the model parameters 
even in the presence of significant noise.  

   
2. PROPOSED CORRELATION MODEL 

 
For the formant frequency estimation from the observed 
speech signal, it is sufficient to restrict the analyses only for 
voiced speech, where the excitation of the VT system can be 
modeled as the output of a glottal filter whose input is a 
periodic impulse-train. The spectral shaping effects of the 
glottis and the VT are combined into one filter H(z), which 
can be represented by an ARMA system transfer function as  
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where pk and zj denote, respectively, the pole and the zero of 
the system with no pole-zero cancellation, P and Q the 
model orders with P>Q and k the partial fraction coefficient 
corresponding to pk = rke

j k. In order to model each formant, 
a pair of complex conjugate poles is required. For a sampling 
frequency FS in samples/sec, Formant frequency (Fk) and 
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bandwidth (Bk) are given by 
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During a short duration of time (frame), a given speech 
signal is generally assumed to be stationary. Hence, H(z) can 
be modeled with constant coefficients within a frame. An 
impulse-train excitation with period T can be expressed as 
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where  is the total number of impulses within the duration 
N. For a duration m, the value of  can be computed as  
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where  represents the nearest integer greater than or equal 
to . For the input uimp(n), the output x(n) can be written as 
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Using (1) and (3), for an initially relaxed ARMA system, 
x(n) can be obtained as 
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The autocorrelation function (ACF) of x(n) with data length 
N can be estimated as [6] 
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In periodic impulse-train excited systems, all the 
necessary information required in order to estimate the 
system poles lies within the first T lags of rx ( ) and hence, in 
(7), it is sufficient to consider M = T/2 number of ACF lags. 
Due to the complicated form of the signal model (6), unlike 
the case of white noise excitation proposed in [6], we 
compute and simplify the correlation function for each lag 
separately and finally obtain the following form 
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Here, TK can be expressed in terms of the poles. The 
correlation model, derived in (8), is expressed explicitly in 
terms of the poles of the ARMA system. Letting pk = rke

j k, 
Tk = ke

j k, and   = number of real poles + the number of 
complex conjugate pole pairs, correlation model reduces to 

1...,,1,0,)]sin()cos([)(
1

Mrr
l

lllllx
  (10)              

where l = lcos l , l = ls in l. Each of the  components 
in (10) for 0 < k < , corresponds to a particular formant. 

3. FORMANT ESTIMATION IN NOISE 
 

In the presence of additive noise v(n), the observed noisy 
speech y(n) can be written as 

y(n) = x(n) + v(n)                              (11) 
and assuming v(n) is uncorrelated with the input uimp(n), 
ry ( ), the ACF of y(n), can be expressed as    
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In the case of additive white Gaussian noise, one can obtain 

.0,)(
0,)(

)(
2

y

vy
x r

r
r                         (13)  

However, under the heavy noisy conditions, estimation of 
rx ( ) using (12) or (13) may cause significant error at all 
lags resulting in poor pole estimates for conventional 
correlation based methods. To alleviate this problem, we 
propose a correlation-fitting approach where an ARBLS 
error minimization algorithm is used to estimate the model 
parameters. Note that to reduce the noise effect in 
correlation-fitting,  > 0 is considered. 

The parameters {rl, l, l , l} of each component Gl( )  
of (10) with  > 0 are determined such that the total squared 
error between the (l 1)th residual function and Gl( )  is 
minimized. The lth residual function can be defined as  
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and the objective function can be formulated as  
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For each set of chosen values of rl and l, the optimum 
values of l and l can be obtained by making zero the 
partial derivatives of Jl with respect to rl and l. The values 
of lr̂  and lˆ  corresponding to the global minimum of Jl, are 
selected as an estimate of formant frequencies if 0 < l < . 

In order to suppress the natural spectral tilt of the signal, 
a first order pre-emphasis filter is used. We perform a frame 
by frame analysis considering an overlapping window. 
Although in the previous section rectangular window is 
considered implicitly, the performance remains almost same 
even if the hamming window is used. 

In the ARBLS method, unlike the conventional 
harmonic retrieval methods, K formant frequencies are 
sequentially determined from K number of stages. The 
possible extreme ranges of the formants (ROF) (both 
frequency and bandwidth) are available in literature and are 
utilized to restrict the search space [1], [7]. In each stage of 
the ARBLS algorithm, an updated initial frequency estimate 
is used. At the first step, the frequency candidate for the first 
formant (F1) is estimated from the smoothed spectral peaks 
of noisy observations. The candidate (with the largest peak)  
inside the desired region specified by the ROF is taken as an 
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Table I: RMSE for synthetic vowels 
 

SNR = 0 dB SNR = 5 dB Vowels 
Prop. LPC AFB Prop. LPC AFB

/a/ 
F1 
F2 
F3 

   43.0  
  75.2 
198.2 

128.1 
358.6 
403.3 

244.7 
485.8 
461.9 

  36.7  
  33.4 
128.9 

 104.9 
177.4
305.6

  98.5 
140.5
182.1

/u/ 
F1 
F2 
F3 

  93.0  
205.4 
252.1 

294.2 
711.2 
774.7 

792.1 
720.1 
620.2 

  50.6  
  57.4 
176.0 

   96.2
232.2
376.8

143.4 
204.1
317.0M

al
e 

/i/ 
F1 
F2 
F3 

 129.8  
  77.1 
100.2 

 254.8 
 156.2 
268.5 

982.3 
  53.8 
164.8 

  57.7  
  38.2 
  71.8 

127.1 
130.1
144.5

549.6
 47.2  

  71.6

/a/ 
F1 
F2 
F3 

  98.6  
 77.4 
80.0 

185.2  
186.0 
92.16 

265.5 
205.0 
80.7 

 70.0  
  60.3 
73.8 

122.9 
124.3
81.3 

278.3 
116.2
72.9 

/u/ 
F1 
F2 
F3 

 134.9  
 140.3 
163.8 

396.1 
599.6 
519.5 

379.2 
356.1 
259.4 

  93.3  
 125.5 
115.8 

117.9
241.5
287.1

132.0 
201.1
152.9Fe

m
al

e 

/i/ 
F1 
F2 
F3 

 153.4  
179.3 
51.7 

629.8  
537.4 
244.3 

490.2 
319.2 
47.5 

  57.7  
 107.3 
  34.2 

203.0 
119.2
75.7 

233.8
142.6  
25.4 

 
initial estimate and the frequency search is performed in its 
neighborhood. For the initial estimates at the remaining 
stages of the ARBLS algorithm, smoothed spectral peaks of 
the residue functions obtained for the corresponding stages 
are used where similar to the case of first formant, we utilize 
the practical knowledge of the ROF for different formants 
[1], [7]. 

 
4. SIMULATION RESULTS AND DISCUSSION 

 
The proposed formant frequency estimation algorithm has 
been tested using some synthetic and natural vowels, and 
some natural sentences taken from the well-known TIMIT 
speech database. Recently, a reference database for the VT 
resonances (VTR) of a large number of TIMIT sentences is 
reported in [8]. The VTR database is carefully used (keeping 
in mind the differences between VTR and formant 
frequencies, [1]) as a reference for the TIMIT sentences. For 
the performance comparison, we consider the LPC (14th 
order) and the adaptive filter-bank (AFB) methods [5]. 

At first we present results for three synthetic vowels, 
/a/, /u/, and /i/, corrupted by white Gaussian noise. Vowels 
with duration of 200 ms are synthesized using the Klatt 
synthesizer considering the pitch values of 120 Hz and 220 
Hz, respectively, for male and female speakers. We perform 
the formant estimation every 10 ms with a 20 ms window 
only for the voiced frames. In the ARBLS algorithm, the 
search range of rl is chosen as 0.8  rl  0.99 for F3, and 
0.85  rl  0.99 for F2 and F1, and l is searched ±10% of  
around the initial estimates. An acceptable level of 
estimation accuracy can be achieved with a search resolution 
of r = 0.01 for rl and  = /100 for l. The number of 
lags for the ACF is set to be M < T/2.   

Table II: Estimated mean and standard deviation for natural vowels 
 

Male (/a/) Female (/i/) Fi 
Ref. Prop. LPC AFB Ref. Prop. LPC AFB

F1 754 
(33) 

778 
(38) 

815 
(58) 

826 
(51) 

435 
(3) 

443 
(12) 

422 
(17) 

451 
(28) 

F2 1369 
(22) 

1377 
(62) 

1416 
(85) 

1401 
(72) 

2638 
(35) 

2616 
(51) 

1990 
(126)

2284 
(141)

F3 2402 
(29) 

2429 
(91) 

2551 
(123)

2516 
(101) 

3250 
(70) 

3259 
(110)

2831 
(128)

2976 
(116)

 
We have computed the root-mean-square errors (RMSE) in 
the estimation of each formant frequency (Fi) at a particular 
level of SNR. The mean operation, required in the 
computation of RMSE, is performed over different voiced 
frames and 20 independent trials. Table I shows the RMSE 
values (Hz) obtained by different methods at SNR = 0 and 5 
dB. Clearly, the performance of the proposed (Prop.) method 
is superior to that of the other methods, and at SNR = 0 dB 
the RMSE values for other methods increase significantly.  

Next, four natural vowels /a/, /u/, /i/, and /e/ are taken 
from [9] with the reference formant values. The vowels were 
contained in the words “hod”, “hood”, “heed”, and “head”. 
For the purpose of analysis, pitch periods (T) are determined 
from the noise-free speech signals using the autocorrelation 
method [7]. In Table II, the estimation performance in terms 
of mean and standard deviation (shown in the parenthesis) 
for a male vowel /a/ and a female vowel /i/ corrupted by 
white Gaussian noise is presented at SNR = 5 dB. It is 
evident that the proposed method is able to estimate the 
formant frequencies quite accurately in both cases. Due to 
the high level of energy in the frequency band of F1, 
estimation error in F1 is low for all three methods at SNR = 
5 dB. However, the low level of energy in the F3 band and 
the presence of strong background noise make F3-estimation 
difficult. But the proposed method is capable of overcoming 
these difficulties by employing the ARBLS algorithm to 
extract the correlation model parameters which give the 
formant frequencies. In Fig. 1, the effect of noise on the 
estimation errors in terms of RMSE is plotted for the same 
male vowel /a/ from SNR = 0 dB to 40 dB. The difference in 
the RMSE values between the proposed and other methods 
is quite high for F3. It is to be mentioned that the estimation 
accuracy of the proposed method for these four vowels is 
also investigated in the presence of babble noise. In this 
case, the level of performance achieved by the proposed 
method in comparison to that of the other methods is almost 
similar to the case of white noise environment. 

Finally, we present the estimation results for a natural 
male utterance “Rob sat by the pond” which is taken from 
the TIMIT database (sampling frequency = 16 KHz). In Fig. 
2 (a) the reference formant frequencies are plotted on the 
spectrogram of noise-free speech [8]. The estimated 
formants by using different methods at SNR = 5 dB in the 
presence of white noise are plotted on the spectrogram of the 
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Fig. 1. Effect of SNR on RMSE (Hz). 
 

noise-free signal to clearly show the formant estimation 
accuracy during the voiced regions. For fare comparison, 
voicing decisions are taken from the AFB method [5]. 
Formant frequencies are estimated only in the voiced frames 
(dark lines in the spectrogram) and the interval between the 
two voiced frames are just end-point connected (dotted lines 
in the spectrogram) for Figs. 2(a) to 2(c). Since the AFB 
method works on sample by sample, it provides values also 
for those intervals. It is evident that the proposed method 
provides better estimation accuracy even in the region 
showing a rise-fall pattern. However, the estimation 
accuracy degrades for F3 during the last few frames; the 
reason is same as explained earlier.  

 
5. CONCLUSION 

 
A correlation model for the voiced speech is proposed for 
the formant frequency estimation in the presence of noise. It 
is shown that even at a low SNR, the use of an adaptive 
residue-based least-square optimization algorithm can 
provide accurate estimation of the correlation model 
parameters, which are used to calculate the formant 
frequencies. Analyses on some synthetic and natural speech 
segments have been performed under noisy condition in 
order to evaluate the accuracy of the proposed formant 
frequency estimator. Simulation results show that the 
proposed method can provide fairly accurate formant 
frequency estimates at moderate to even low SNR.   
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