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ABSTRACT

This work develops a statistical framework to predict acoustic fea-
tures (fundamental frequency, formant frequencies and voicing)
from MFCC vectors. An analysis of correlation between acous-
tic features and MFCCs is made both globally across all speech
and within phoneme classes, and also from speaker-independent
and speaker-dependent speech. This leads to the development of
both a global prediction method, using a Gaussian mixture model
(GMM) to model the joint density of acoustic features and MFCCs,
and a phoneme-speci c prediction method using a combined hidden
Markov model (HMM)-GMM. Prediction accuracy measurements
show the phoneme-dependent HMM-GMM system to be more ac-
curate which agrees with the correlation analysis. Results also
show prediction to be more accurate from speaker-dependent speech
which also agrees with the correlation analysis.

Index Terms— Formants, fundamental frequency, voicing,
GMM, HMM

1. INTRODUCTION

In distributed speech recognition (DSR) systems only the speech
features (typically mel-frequency cepstral coef cients (MFCCs)) are
transmitted to the remote recogniser. As no time-domain speech sig-
nal is transmitted, techniques such as Fourier and LP analysis cannot
be applied to extract acoustic speech features such as voicing, fun-
damental frequency or formant frequencies. These acoustic speech
features are often important to obtain and have application in speech
analysis, reconstruction, enhancement and recognition. Therefore,
to obtain acoustic speech features directly from MFCC vectors, al-
ternative methods of extraction need to be developed. It is the aim of
this work to develop methods that enable acoustic speech features to
be predicted from the MFCC representation.

This work builds on previous work that predicted either the voic-
ing and fundamental frequency [1] or formant frequencies [2] from
MFCC vectors. These methods operated by modelling the joint den-
sity of MFCCs and either fundamental frequency or formant fre-
quencies. Using the joint density and an input MFCC vector, a
prediction could then be made of the fundamental or formant fre-
quencies. This work now combines prediction so that for the rst
time, voicing, fundamental frequency and formant frequencies are
predicted jointly. Additionally, the voicing of the speech is also con-
sidered explicitly to further improve prediction accuracy.

This work also analyses the correlation between acoustic fea-
tures and MFCCs to gain understanding in order to increase predic-
tion accuracy. A comparison of measuring correlation globally and

The work is funded by EPSRC grant GR/S30238/01.

then within phoneme classes is made. Investigation is also made into
the effect on correlation of moving from speaker-independent speech
to speaker-dependent speech. This correlation analysis is carried out
in section 2. Section 3 describes the proposed method of joint predic-
tion of acoustic features from MFCCs. First the global correlation is
exploited within a Gaussian mixture model (GMM) framework and
then secondly the phoneme-speci c correlation is used within a com-
bined hidden Markov model (HMM)-GMM framework. Predictions
are also made as to the voicing. Experimental results are presented in
section 4 which compare the accuracy of global prediction of acous-
tic features from phoneme-speci c prediction. The effect on predic-
tion accuracy of using speaker-dependent and speaker-independent
speech is then examined. The results of prediction are compared to
the correlation analysis.

2. CORRELATION ANALYSIS

This section investigates the correlation that exists between acoustic
speech features and MFCCs. The aim of this analysis is to con-
rm the existence of correlation and then to see how correlation

can be increased which should lead to better prediction of acous-
tic features from MFCC vectors. The analysis rst compares the
correlation when measured globally across all speech sounds to that
measured within individual phoneme classes. Second, correlation
is compared when measured on speaker-independent speech and
speaker-dependent speech.

The correlation between each acoustic feature and the MFCC
vector is measured using multiple linear regression [3]. A linear
model is computed to describe the relation between the MFCC vec-
tor (independent variable) and each of the acoustic features (depen-
dent variable). This allows each acoustic feature, F(j), to be rep-
resented in terms of the MFCC vector, x, using a set of M + 1 re-
gression coef cients, [bj,0, . . . , bj,m, . . . , bj,M ] which are speci c
to the jth acoustic feature:
F(j) = bj,0 + bj,1x(1) + bj,2x(2) + . . .+ bj,Mx(M) + ε

1 ≤ j ≤ M (1)

where ε is an error term. Using a set of training data, least squares
estimation can determine the regression coef cients. These allow a
prediction, F̂(j), of the jth acoustic feature to be made from the
MFCC vector, x. The correlation between the jth acoustic fea-
ture and the MFCC vector, x, can nally be determined from the
R-squared term which is de ned as:

R(j)2 = 1−
P

i

“
Fi(j)− F̂i(j)

”2
P

i

`
Fi(j)− Fi(j)

´ (2)

where F(j) is the mean of the jth acoustic feature.
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MFCC vectors are computed as speci ed in the ETSI Aurora
DSR front-end [4], which leads to a stream of 14-D MFCC vectors
at a rate of 100 vectors per second. Acoustic features are extracted at
the same rate as the MFCC vectors and using the same 25ms frames
of speech. The acoustic feature vector, F, comprises fundamental
frequency, F0, and the rst four formant frequencies, F1 to F4. The
databases used in these tests are described in section 4.

2.1. Global and Phoneme-speci c Correlation

The global correlation between acoustic features and the MFCC vec-
tor is measured by pooling features from all speech sounds in the
set of training utterances. Using multiple linear regression, the cor-
relation of each acoustic feature to the MFCC vector can then be
measured. The phoneme-speci c correlation is measured by rst
segmenting the training data into phoneme classes using hand an-
notations of the data. Within each phoneme class, multiple linear
regression is used to measure the correlation between each acoustic
feature and the MFCC vector. To obtain a single correlation mea-
sure, the correlation of each acoustic feature is averaged across the
set of phonemes.

Global and phoneme-speci c correlations of fundamental fre-
quency, F0, and formant frequencies, F1 to F4, are shown in table
1, measured from male speaker-independent speech taken from the
WSJCAM0 database - see section 4 for details. The correlation mea-
sures are broken down into those from unvoiced and voiced speech.

voicing F0 F1 F2 F3 F4

Global
u − 0.740 0.708 0.733 0.796
v 0.101 0.721 0.626 0.693 0.766

Phoneme - u − 0.781 0.799 0.754 0.653
speci c v 0.390 0.805 0.886 0.795 0.704

Table 1. Correlations between acoustic features and MFCCs calcu-
lated globally and by phoneme for unvoiced and voiced speech

The results show that when measuring correlation within indi-
vidual phoneme classes, higher correlation is observed than when
considering the global correlation across all speech sounds. This
observation is to be expected as restricting the multiple regression
to model correlation from a small cluster of related sounds is more
likely to produce good modelling than when generalised across all
speech sounds. This suggests that predicting acoustic features from
phoneme-speci c models should be more accurate than prediction
from global models.

Of the acoustic features being measured, the formants show con-
siderably higher correlation to the MFCC vector than fundamental
frequency. This is attributed to the shape and spacing of the mel-
lterbank used in MFCC extraction. The lterbank allows a rea-

sonable spectral envelope to be reproduced which shows formant
positions but lacks much of the ner spectral structure which con-
veys fundamental frequency information. A signi cant increase in
fundamental frequency to MFCC correlation is observed when com-
paring the global to phoneme-speci c measurement. This indicates
that fundamental frequency is in uenced by the phoneme which has
also been reported in [5].

2.2. Speaker Dependent and Independent Correlation

To examine the effect that different, and multiple, speakers have
on the correlation between acoustic features and MFCC vectors,
three speech databases have been used. Two databases are speaker-
dependent (one from a male speaker and the other a female speaker)
and comprise a set of 246 phonetically rich sentences each. The third

database is taken from 10 different male speakers from the WSJ-
CAM0 database and comprises 765 utterances. Further details of the
speech databases are given in section 4. Using a similar procedure to
that described in section 2.1 for phoneme-speci c correlation mea-
surement, the fundamental frequency and formant frequency corre-
lation to MFCC vectors of the three databases have been computed.
These are shown in table 2, broken down into unvoiced and voiced
speech.

voicing F0 F1 F2 F3 F4

SI male
u − 0.781 0.799 0.754 0.653
v 0.390 0.805 0.886 0.795 0.704

SD male
u − 0.783 0.826 0.811 0.744
v 0.714 0.835 0.885 0.837 0.745

SD female
u − 0.799 0.763 0.790 0.747
v 0.830 0.827 0.732 0.791 0.812

Table 2. Phoneme-speci c correlations between acoustic features
and MFCCs for the speaker-independent (SI) and two speaker-
dependent (SD) databases

Comparing rst the correlation results for the speaker-
independent male and speaker-dependent male shows a slight in-
crease in correlation for formant frequencies and a substantial in-
crease in correlation for fundamental frequency. The large increase
in fundamental frequency correlation, when moving to speaker-
dependent analysis, arises from the reduction in fundamental fre-
quency variation. The more modest increase in formant frequency
correlation, when moving to speaker dependent analysis, is ex-
plained by the fact that the MFCC vector itself contains a substantial
amount of formant information. Moving to speaker-dependent mea-
surement does not provide much extra information, hence the limited
increase in correlation.

Comparing correlation results for speaker-dependent male and
speaker-dependent female speech shows, in general, higher formant
frequency to MFCC correlation for the male speaker. This result is
consistent with traditional signal processing methods of formant es-
timation that perform less well on female speech due to the wider
spacing of pitch harmonics which makes the precise localisation of
formant frequencies dif cult. For fundamental frequency, the re-
verse is true, with substantially higher correlation observed with the
female speaker. This may be due to the higher frequencies associ-
ated with female speech spanning a wider range of mel- lterbank
channels than with male speech, making their identi cation more
accurate.

Generally, voiced speech produces higher formant frequency to
MFCC correlation, compared to unvoiced speech. This is also con-
sistent with formant estimation methods which are more accurate for
voiced speech. This is due to better de ned spectral structure pro-
duced by the harmonic structure of voiced speech in comparison to
the noise-like structure from unvoiced speech.

3. PREDICTION OF ACOUSTIC FEATURES

Prediction of acoustic features from MFCCs can either exploit
the global correlation between acoustic features and MFCCs or
phoneme-dependent correlations. A brief description of the GMM
and HMM-GMM methodologies is described here, for more details
see [2].

3.1. GMM-based Prediction

Predicting acoustic features from MFCCs comprises two parts. First,
three GMMs are created to model the joint density of acoustic fea-
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tures and MFCCs for non-speech, unvoiced, and voiced speech. Sec-
ond, for predicting acoustic features from a stream of previously
unseen MFCC vectors, for each vector, a voicing decision is made
using prior and posterior voicing probabilities. Depending on the
predicted voicing class (voiced, unvoiced or non-speech), acoustic
features may be predicted from the appropriate GMM using a maxi-
mum a posteriori (MAP) prediction.

Training begins with the creation of augmented feature vectors
by concatenating MFCC, x, and acoustic, F, vectors:

yi = [xi,Fi]
T (3)

where vector xi = [x(0), x(1), . . . x(12), ln(e)] comprises static
MFCCs 0 to 12 and log energy for the ith frame of speech. The
acoustic feature vector Fi = [F0, F1, F2, F3, F4] comprises the
fundamental frequency and frequencies of the rst four formants of
the ith frame of speech.

From pools of non-speech, unvoiced and voiced augmented fea-
ture vectors, three Gaussian mixture models (GMMs) are created to
model the joint density of non-speech, unvoiced and voiced MFCC
vectors and acoustic features across all phonemes, denoted Φns, Φu

and Φv , respectively.
For prediction of acoustic features, a voicing decision must rst

be made in order to determine which GMM is to be used. For MFCC
vectors predicted as voiced, fundamental and formant frequencies
are predicted. For vectors predicted as unvoiced, only formant fre-
quencies are predicted. No acoustic features are predicted for MFCC
vectors predicted as non-speech.

The probabilities of a given MFCC vector, xi, coming from
non-speech, unvoiced and voiced speech are calculated. For voiced
speech, this is given by:

P (v|xi) =
P (v) p (xi|v)

p (xi)
(4)

where P (v) is the prior probability of the voiced class, p(xi) is the
prior probability of vector xi, and p(xi|v) is given by the corre-
sponding marginalised GMM Φv,x:

p(xi|v) = Φv,x(xi) =

KX
k=1

αv
kφ

v,x
k (xi) =

KX
k=1

αv
kp(xi|φv,x

k ) (5)

where p (xi|φv,x
k ) is the marginal distribution of the MFCC vector

for the kth cluster of the voiced GMM, φv,x
k . Similarly, P (u|xi) and

P (ns|xi) are computed.
The predicted voicing class of a MFCC vector is given as voiced,

unvoiced or non-speech according to the highest probability. If a
MFCC vector is deemed to be voiced, then the voiced GMM, Φv ,
is used to predict fundamental and formant frequencies. For un-
voiced MFCCs, formant frequencies are predicted from the unvoiced
GMM, Φu, whilst for non-speech MFCCs, no acoustic features are
predicted.

For prediction of acoustic features from voiced MFCC vectors,
the maximum a posteriori (MAP) estimation of the ith vector of
acoustic frequencies, F̂i, from xi is given by:

F̂i = argmax
Fi

{p (Fi|xi,Φ
v
k)} (6)

Acoustic feature vector predictions from each cluster are weighted
by the posterior probability, hk(xi), of the ith MFCC vector xi,
belonging to the kth cluster:

F̂i =

KX
k=1

hk(xi)

j
μv,F

k +Σv,Fx
k (Σv,xx

k )−1 (xi − μv,x
k )

ff
(7)

The posterior probability, hk(xi), is given by:

hk(xi) =
αv
k p (xi|φv,x

k )
KX

k=1

αv
k p (xi|φv,x

k )

(8)

A ve point median lter is used to smooth each acoustic feature
vector track by removing discontinuities. Segments of speech and
non-speech are also forced to have a minimum duration of 30ms.

3.2. HMM-GMM-based Prediction

For HMM-GMM prediction, three GMMs which model non-speech,
unvoiced and voiced speech are created for every state of each model
of a set of monophone HMMs. During training, a set of W three-
state monophone HMMs are created, one HMM for each mono-
phone, through Baum-Welch re-estimation using MFCC vectors, x,
and their velocity and acceleration derivatives. The non-speech, un-
voiced and voiced GMMs associated with each state of every HMM
are created by realigning training data vectors to the HMMs using
Viterbi decoding. For each training utterance, model and state allo-
cations are found through forced alignment with annotations [2].

4. EXPERIMENTAL RESULTS

The experiments rst consider the accuracy of acoustic feature pre-
diction from MFCCs from the GMM and HMM-GMM methods
to determine whether restricting the sound class that prediction is
made from improves accuracy, as suggested by the correlation anal-
ysis. Second, the effect on accuracy of using speaker-dependent
or speaker-independent speech is investigated. The results are then
compared to the correlation analysis made in section 2.

Three speech databases have been used in these experiments.
Two are speaker-dependent databases (one US male speech and
the other US female speech) which comprise phonetically rich sen-
tences. The speaker-dependent male database comprises 601 sen-
tences for training and 246 for testing. For the female speaker-
dependent database, 650 sentences are used for training and 246 for
testing. The third database is speaker-independent and comprises
1845 sentences from the male part of the UK English WSJCAM0
database. 1080 sentences, spoken by 54 speakers are used for train-
ing and 765 sentences spoken by 10 different speakers are used for
testing. All databases are sampled at 8kHz.

Reference formant frequencies have been extracted using LPC
analysis followed by Kalman ltering [6]. For the two speaker-
dependent databases, reference fundamental frequency tracks were
obtained from laryngograph data. The ETSI Aurora DSR front-
end [4] was used to give fundamental frequency estimates for the
speaker-independent WSJCAM0 database.

To measure the accuracy of acoustic feature prediction a root
mean square (RMS)-based error measure has been used. The ve
acoustic features being measured (F0 to F4) exist at very different re-
gions of the frequency spectrum. For example, the mean of F1 for the
speaker-dependent male database is 396Hz compared with 3218Hz
for F4. This means that an absolute prediction error, measured in
Hertz, has considerably more impact for low frequency formants and
fundamental frequency than for higher frequency formants. To nor-
malise prediction errors, the RMS error, measured for each acoustic
feature, has been scaled by the standard deviation of the reference
frequencies of that acoustic feature. Therefore, the prediction error,
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E(j), for the jth acoustic features is computed as:

E(j) =
1

σj
ERMS =

1

σj

vuut 1

N

NX
i=1

“
Fi(j)− F̂i(j)

”2
(9)

where Fi(j) and F̂i(j) are the frequencies of the jth reference and
predicted acoustic feature for frame i and σj is the standard deviation
of the jth acoustic feature.

4.1. Global and Phoneme-dependent Prediction

The aim of this experiment is to compare the accuracy of acoustic
feature prediction from the GMM and HMM-GMM systems. This
is in effect using either global or phoneme-speci c modelling of the
joint acoustic feature and MFCC distribution to make the predic-
tions.

Table 3 shows the normalised RMS prediction error for the
acoustic features, computed using the test data of the speaker-
independent male speech database. It was shown in table 1 that
higher correlations between acoustic features and MFCCs were ob-
tained when measuring correlation by phoneme, rather than glob-
ally. Table 3 agrees with the correlation results, as lower normalised
RMS errors are obtained for the HMM-GMM prediction method,
rather than the GMM method which does not exploit the localised
correlations. Except for F4, all the correlation results increase when
analysis is localised to the phoneme level and the normalised RMS
prediction errors decrease.

Closer analysis reveals that the ranks of the phoneme-speci c
correlations and HMM-GMM predictions generally match. For ex-
ample, F2, which has the highest correlation, is also the most easily
predicted. Comparing the ranks of the global correlations and GMM
predictions do not match, that is the acoustic feature with the high-
est global correlation, F4, is not the most accurately predicted, but
actually has the largest normalised RMS error.

voicing F0 F1 F2 F3 F4

GMM
u − 0.693 0.657 0.717 0.772
v 1.009 0.670 0.481 0.633 0.717

HMM- u − 0.644 0.616 0.687 0.789
GMM v 0.950 0.617 0.451 0.610 0.739

Table 3. Normalised RMS errors for prediction of acoustic features
from MFCCs exploiting global (GMM) and phoneme-dependent
(HMM-GMM) correlations

4.2. Speaker-dependent and Speaker-independent Prediction

Table 4 presents errors for HMM-GMM prediction using the
speaker-independent and two speaker-dependent databases. Results
are given for two types of HMM Viterbi decoding: forced and
unconstrained. With forced recognition the model and state se-
quences are found by forced alignment with the correct model se-
quence and so are more accurate than unconstrained recognition
where the model sequence is unknown. The forced-aligned results
provide an upper bound of recognition accuracy. The results pro-
duced with unconstrained recognition are more realistic as they have
no prior information about the phoneme sequence. Instead, the
HMM network decodes the input vectors into the most likely se-
quence of phonemes for prediction. The word recognition accura-
cies are 70.7% for the speaker-dependent female database, 69.6%
for the speaker-dependent male database and 56.2% for the speaker-
independent male database.

voicing F0 F1 F2 F3 F4
SI male u − 0.644 0.616 0.687 0.789

(unconstr.) v 0.950 0.617 0.451 0.610 0.739
SI male u − 0.646 0.630 0.685 0.806
(forced) v 0.911 0.612 0.455 0.612 0.742
SD male u − 0.668 0.581 0.604 0.693

(unconstr.) v 0.637 0.563 0.469 0.551 0.672
SD male u − 0.675 0.583 0.602 0.690
(forced) v 0.649 0.574 0.475 0.552 0.665

SD female u − 0.603 0.667 0.640 0.698
(unconstr.) v 0.455 0.577 0.712 0.637 0.597
SD female u − 0.607 0.676 0.645 0.698
(forced) v 0.465 0.578 0.712 0.641 0.596

Table 4. Phoneme-speci c normalised RMS errors for prediction of
acoustic features from MFCCs with unconstrained and forced HMM
recognition

The results in table 4 follow what would be expected from the
correlation analysis shown in table 2, in that higher correlation gen-
erally leads to lower normalised RMS errors. There is little differ-
ence between prediction using forced and unconstrained recognition,
with forced prediction actually resulting in greater errors more of-
ten than for unconstrained recognition. This demonstrates that the
correct phoneme sequence is not vital, as where the recognition de-
coding makes errors it generally outputs similar sounding phonemes
whose acoustic features are close to the correct phoneme.

5. CONCLUSIONS

The analysis of the correlation between acoustic features and
MFCCs in section 2 suggested that prediction of acoustic features
from MFCCs would be made more accurate by exploiting phoneme-
dependent correlations. This was achieved through a HMM-GMM
framework which produced greater prediction accuracy compared
with a global prediction method.

Analysis of correlation results in relation to prediction accuracy
shows that, in general, as correlation increases, prediction error de-
creases. This indicates that searching for methods to improve corre-
lation would decrease prediction errors.
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