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ABSTRACT 
 
The features used for speech recognition should emphasize 
linguistic information while suppressing speaker differences. 
For speaker recognition, features should have more speaker 
individual information while attenuating the linguistic 
information. In most studies, however, the identical acoustic 
features are used for the different missions of speaker and 
speech recognitions. In this paper, we propose a new 
physiological feature extraction method which emphasizes 
individual information for speaker identification. For the 
purpose, physiological features of speakers were analyzed 
from the point of view of speech production. It is found that 
the speaker individual information is encoded in different 
frequency regions of speech sound. The speaker 
discriminative information was quantified using Fisher’s F-
Ratio in each frequency region. Based on the F-Ratio, we 
proposed a non-uniform sub-band processing strategy to 
extract new feature which can emphasize or refine the 
physiological aspects involves in speech production. We 
combined the new feature with GMM for speaker 
identification task and applied on NTT-VR speaker 
recognition database. Compared with MFCC feature, by 
using the proposed feature, the identification error rate was 
reduced 20.1%.  

 
Index Terms — Speaker identification, physiological 

feature, non-uniform subband. 
 

1. INTRODUCTION 
 
Linear Prediction Coefficient (LPC) and Mel Frequency 
Cepstral Coefficient (MFCC) features are widely used as 
acoustic features for speech recognition. The state of the art 
of text independent speaker identification algorithm is also 
based on modeling the LPC or MFCC feature using 
Gaussian Mixture Model (GMM) [1]. However, the purpose 
of speech recognition is quite different from that of speaker 
recognition, the former task needs to emphasize linguistic 
information and suppress speaker individual information, 
while the later task needs more speaker individual 
information. This contradiction suggests that LPC and 
MFCC may not meet both speech and speaker recognition 
tasks.  

For speaker recognition, the problem is how to extract 
and utilize the information that characterizes an individual 
speaker. Individual speaker information results mainly from 
two factors: physiological and social factors. The former is 
related to the speaker’s gender, age, and oral morphology 
which are inborn characteristics; the latter concerns the 
speaker’s dialect, idiolect, occupation, and so on which 
results from his/her social environment. In this paper, we 
focus on the former factor, and investigate the individual 
information caused from speech production point of view.    

When producing a speech sound, speakers’ physiological 
and morphological features are contained in acoustic 
characteristics of the sound. The diverse articulators’ 
physical properties are represented in acoustic spectra [2]. In 
order to extract that information, some speech feature 
representations were developed. The LPC feature can well 
model the vocal tract property by using an all-pole model 
which reflects the main vocal tract resonance property in 
acoustic spectra [2][3]. While MFCC feature takes the 
auditory nonlinear frequency resolution mechanism into 
consideration which makes the representation more robust 
[3]. For extracting more direct physiological features, the 
fundamental frequency or pitch which reflects the vocal 
cord information of speakers is often used [4]. The LPC 
residual signal for describing the speakers’ glottal 
information [5] is also proposed. When these features are 
used for speaker recognition, the performance is improved 
as some researchers demonstrated [4][5]. In essence, most of 
the representations for speaker recognition want to catch the 
main vocal tract physical property which is usually 
described as acoustic resonance property. Actually, besides 
the main vocal tract, there are some side branches, such as 
the nose, piriform fossa, etc., which introduce specific 
features into speech [6][7]. These features are distributed in 
some specific frequency regions. For example, as revealed 
in [6], the side branches always produce anti-resonance 
which is reflected as zero-pole pairs on spectral profile. A 
relation between the physiological features and acoustic 
ones is shown in Fig. 1. It shows the transfer functions for 
vowel /a/. The top curve is the spectrum of transfer function 
of the oral cavity without side branches, which was 
calculated using a transmission line model. The bottom 
curve is the long-term average spectrum of real sound.  The 
other curves were calculated for the oral cavity with nasal 
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coupling and/or the piriform fossa.  As shown in Fig. 1, 
when both the nasal coupling and piriform fossa are taken 
into account, the simulation (the second curve from the 
bottom) has a nice matching with the real sound. The 
situation of pole-zero pairs depends on the coupling degree 
of the nasal and oral cavities. Because different speakers 
usually have diverse coupling degrees of the cavities 
according to their habits, the fine structures of those 
frequency regions reflect the different physiological 
information for the speakers. Those cavities produces 
acoustic feature in some frequency regions, such as the side 
branch of piriform fossa produces anti-resonance between 
4kHz and 5kHz. Also, those cavities are less changed during 
speech production. If we emphasize the acoustic feature 
around those frequency regions, the feature should be more 
suitable for speaker individual characteristics description.  
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Fig.1 Transfer functions of the vocal tract and a long-term 

average spectrum for vowel /a/. Pole-zero pairs in regions of 
300Hz, 3000Hz and 4500Hz were caused by the nasal 

coupling and piriform fossa. (After [6]) 
 
From the analysis above, we find that the speaker 

individual information is not distributed uniformly in each 
frequency band. The Mel frequency analysis for speaker 
individual information extraction is not suitable for speaker 
recognition task. In this paper, we investigate the new 
feature representations which reflect the importance of the 
speaker specific information in different frequency regions, 
and design a subband processing strategy for feature 
extraction and apply it for speaker identification task. The 
paper is organized as follows. In the second section, the 
physiological feature extraction method is given. In the third 
section, the GMM acoustic model for modeling each 
speaker using HTK is introduced. In the fourth section, 
speaker identification experiments are done to test the 
proposed feature. Lastly, some discussions and conclusions 
are given.   
 

2. NON-UNIFORM SUBBAND PROCESSING FOR 
PHYSIOLOGICAL FEATURE EXTRACTION 

 
As discussed in Section 1, speaker individual characteristics 
are not uniformly encoded in each frequency band. Such as 
glottal information is encoded in low frequency regions 
(between 50Hz and 500Hz), the piriform fossa information 
is encoded in high frequency regions (between 4000Hz and 
5000Hz), etc.  For speaker recognition, we need to 
investigate which frequency band possesses more speaker 
individual information, i.e., the importance of each 

frequency band for speaker recognition. For investigating 
the importance of each frequency band for speaker 
recognition, we use linear frequency scale triangle filters to 
process speech power spectrum. The triangle filters are 
shown in Fig.2. Each filter band gives an output which 
integrates the frequency energy around the center frequency 
of the filter band. We adopt the Fisher’s F-Ratio of each 
frequency band to measure the speaker discriminative 
ability of each frequency band which is used as an index of 
importance of speaker individual information [9]. The F-
Ratio is defined as (1): 
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Fig.2 Uniform Sub-band filters with uniform bandwidth  
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Formula (1) is the ratio between the inter-speaker variance 
and intra-speaker variance of the feature in one frequency 
band. This measurement is often used to measure the 
discriminative ability of a feature for pattern recognition. 
We adopt it for measuring the speaker discriminative score 
in each of frequency bands.  

We use the NTT-VR speaker recognition database in 
which there were 35 speakers in total including 22 male 
speakers and 13 female speakers [8]. The speech was 
collected in 5 sessions over a period of 10 months. In each 
session, each speaker was asked to speak the sentences with 
normal, slow and fast speed. The average duration of each 
sentence is 4s. The speaker discriminative ability is 
calculated using formula (1) for each frequency region, and 
shown in Fig.3. In Fig.3, the session recorded in August, 
1990 is denoted as 90.8. Other sessions are denoted 
analogously. From Fig.3, one can see that, the 
discriminative information is mainly concentrated in three 
regions in frequency domain. The lowest region from 50Hz 
to 300Hz is concerned with the glottal information, the 
fundamental frequency. The dominant region is located in 
the range from 4 kHz to 5.5 kHz  which is concerned with 
the piriform fossa [7].  The region from 6.5 kHz to 7.8 kHz
seems to be related to the consonants, probably the location 
of their constrictions. It is interesting to see that the 
distribution of speaker discriminative information is 
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invariant over the time span. In contrast, there is less 
speaker discriminative information in the middle frequency 
region from 0.5 kHz to 3.5 kHz. This because that the 
phonetic discriminative information is concentrated in this 
region which is consistent among the speakers for phoneme 
recognition. This statistical result confirms our speculation 
in Section 1, i.e., speaker individual information is not 
uniformly distributed in each frequency band. We use this 
result to design sub-band processing strategy for feature 
extraction for speaker identification.    
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Fig.3 Speaker discriminative score in frequency domain 

using F-Ratio 
 
In order to enhance the contribution of those frequency 

bands with more speaker individual information in spectral 
profile, we conduct the following procedure on sub-band 
filters’ design. We improve frequency resolution in those 
frequency regions with high F-Ratio values. In the design of 
the sub-band filters, the bandwidth of each sub-band is 
inverse proportional to the F-Ratio of each frequency band. 
By this processing, the resolution of the spectral structure 
around frequency regions with high F-Ratio is improved. 
The designed filters are shown in Fig.4.  
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Fig.4 Non-uniform sub-band filters with non-uniform 

bandwidth 
 
Comparing the filters in Figs. 2 and 4, one can see that the 

center frequencies of filter bands are distributed differently 
along frequency axis. The center frequencies are uniformly 
sampled along frequency axis in Fig.2, while are non-
uniformly sampled in Fig.4. In order to compare the 
proposed non-uniform with the Mel frequency description, 
we plot the resolution of each description in frequency 
domain in Fig.5, where the uniform method is also plotted 
for a reference. From Fig.5, one can see that Mel frequency 
sampling has high frequency resolution in low frequency 
regions, while the non-uniform frequency sampling has high 
frequency resolution in the frequency regions with high F-
Ratio values. Since the spectral envelope extracted with the 
non-uniform filters designed based on F-Ratio emphasizes 
the speaker specific information, it is possible that the 
feature extracted using these non-uniform filters improves 
the speaker identification performance. In the following 

sections, we test the feature set which is extracted using the 
non-uniform filter bands by doing speaker identification 
experiments.  
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Fig.5 Comparison of frequency resolutions of filter bands  

 
3. SPEAKER MODELING FOR IDENTIFICATION 

BASED ON HTK 
 
GMM is widely used for speaker modeling in context 
independent speaker identification [1]. In our research, we 
use HTK to design the speaker models [10]. Each speaker is 
modeled using a three-state HMM in which only one state is 
modeled with Gaussian mixture distributions, the other two 
states are dummy states. This HMM speaker model is 
almost the same as the GMM speaker model except that  the 
former has state self-transition involved in the calculation of 
the likelihood probability. The identification rate is defined 
as the ratio between the number of correctly identified 
speech segments and total number of speech segments for 
each speaker. Our purpose in this study is to test whether the 
proposed feature has more speaker individual information,
thus a three-state with two dummy states HMM is used for 
each speaker modeling to evaluate the proposed method.   
 

4. SPEAKER IDENTIFICATION EXPERIMENTS 
 
We conducted speaker identification experiments on NTT-
VR database [8]. For training speaker models, 10 speech 
sentences uttered at normal speaking rate were used for each 
speaker from session 90.8 which was recorded in August, 
1990. For identification, we used all other utterances in all 
sessions at different speaking rates. The processing diagram 
for speech feature extraction is shown in Fig.6. In the 
feature extraction processing, a voice activity detector 
(VAD) is used to delete the silences and pause periods 
within speech sentences. The signal is then pre-emphasized 
using an emphasizing coefficient of 0.97. Short-term fast 
Fourier transform (SFFT) is used for each frame in which a 
hamming window with 16ms frame length and 8ms shift 
was employed. 60 band pass filters are used to integrate 
each frequency band to get power spectrum. After applying 
the logarithm, the Discrete Cosine Transform (DCT) is 
adopted to get 32 order cepstral coefficients vectors (zero-th 
order cepstral coefficient was excluded). Finally, the 
proposed feature vectors are extracted for speaker modeling. 
In the experiments, three kinds of feature sets are extracted 
under the conditions in which the filter bands block in Fig.6 
was Mel frequency scale filter bands, uniform linear 
frequency scale filter bands (in Fig.2), or the proposed non-
uniform filter bands (in Fig.4). The features are denoted as 
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MFCC, LFCC, and NUFCC, respectively. These feature sets 
were modeled by both the diagonal covariance matrix and 
full covariance matrix. The performance of using full 
covariance matrix is better than that of using the diagonal 
covariance matrix. For full covariance setting, however, the 
Gaussian mixture number was limited when the training 
data set is not large enough. The Gaussian mixture number 
in our experiment was chosen as 4 for all identification 
experiments. The identification results are in Fig.7 for the 
three feature sets. 
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Fig.6. Speech feature extraction diagram 

Fig. 7 Identification rate for the three feature sets 
 

In Fig.7, the horizontal axis is the session index. From 
Fig.7, one can see that the identification rate is high in 
session 90.8 since the speaker models are trained using the 
data set from the same session although the testing data is 
different from the training data set. Comparing with the 
linear feature LPCC, the performance of feature MFCC is a 
little bit better. Among the three feature sets, the proposed 
non-uniform frequency feature (NUFCC) performs the best. 
Compared with the baseline feature set MFCC, the error 
reduction rate is about 20.1% on average for all testing 
sessions.  
 

5. DISCUSSIONS AND CONCLUSIONS 
 
In this study, we first analyzed speaker specific 
physiological information from the speech production point 
of view. The analysis showed that speaker individual 
information is partially concerned with physiological 
difference of speech organs. For quantitative analysis, we 
investigated the frequency band dependent distribution of 
speaker individual information using F-Ratio. The results 
showed that the piriform fossa causes one dominant 
discriminative speaker information in frequency region 
between 4kHz and 5.5 kHz, and the glottis and the 
constriction of the consonants would be the secondary factor 
in the lower and higher frequency domains, while almost no 
discriminative speaker information in the region of 0.5-3.5 

kHz. According to the results, we designed non-uniform 
filter bands to extract speaker physiological-dependent 
features. Speaker identification experiments showed that 
feature extracted using the proposed non-uniform sub-band 
processing improved speaker identification performance. 
The error reduction rate was 20.1% compared with the 
baseline model with MFCC.  
     For further applying and improving the speaker 
identification performance based on the non-uniform 
distribution of speaker specific information in frequency 
domain, some problems need to be investigated further. One 
problem is how to quantify the speaker specific information 
in each frequency band more efficiently, and integrate this 
information using a statistical framework. Another problem 
is how to adopt different feature extraction methods for 
different speech categories. Because for different speech 
categories, such as for vowels or consonants, they excite 
different aspects of speaker individual information, we need 
to extract the speaker specific information by considering 
the different speech pattern categories. All these problems 
remain as our future work.  
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