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ABSTRACT
This paper focuses on the analysis of speech production signals
(physical measurements from electromagnetic articulograph) from
the perspective of phone discrimination. We explore two differ-
ent signal representation schemes for the articulatory signals, one
based on time-domain analysis and the other based on frequency
domain. We quantify the amount of discrimination information of-
fered by the speech production signals in identifying the phone labels
through mutual information. Mutual information analyses establish
that substantial discrimination information is present in the articu-
latory stream. Furthermore, phonological classi cation results with
articulatory signals indicate higher accuracy compared to the acous-
tic signal.

Index Terms— Analysis of articulatory measurements, auto-
matic speech recognition, non-parametric mutual information esti-
mation, phonological classi cation.

1. INTRODUCTION

State-of-the-art automatic speech recognition (ASR) systems use pa-
rameterizations of the acoustic speech signal for recognition. How-
ever, this representation of speech does not consider the actual
speech production process which results from continuous movement
of articulators from one con guration to the next. These low fre-
quency speech production signals characterize an intermediate rep-
resentation of the phonetic labels typically associated with the acous-
tic signal. Hence, directly modeling the underlying process that gen-
erates the acoustic signal promises to provide more discriminatory
information in recovering the accurate phonetic sequence.

Articulatory features (AFs) have been proposed for ASR mainly
from two different perspectives. One, from the perspective of mod-
eling coarticulation [1, 2, 3], which surmises that the joint mod-
eling of acoustic-articulatory streams could better account for the
co-articulatory effects and the other, from the robustness of AFs to
environmental noise that its acoustic counterpart suffers from [4].
AFs can be obtained either from direct physical measurements of
articulatory movements through techniques like magnetic resonance
imaging (MRI), electromagnetic midsaggital articulography (EMA)
[3] or as discrete knowledge-based representations which describe
either articulation [1, 4] like voicing, manner, place, etc. or me-
chanics [2] like tongue, jaw, lip positions, etc. The drawback of the
former acquisition method is that the direct observations are dif -
cult to obtain and typically not available during recognition. Inverse
mapping procedures using neural network [4] and HMM-based mod-
els [5] have been presented to predict the articulatory evidence from
acoustic evidence but with limited success.

This material is based upon work supported by awards from NSF, ONR-
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AFs have been incorporated in several modeling schemes to
jointly model the acoustic and articulatory evidence. However, there
has been lack of a systematic study where the discriminatory capa-
bility of the articulatory features have been shown to aid or buttress
the discrimination offered by the acoustic features in resolving ambi-
guity in phone classi cation. Furthermore, appropriate signal repre-
sentations of the directly-obtained articulatory measurements from
the motivation of phonetic discrimination have not been proposed.
Another drawback of most articulatory feature based systems is that
they depend on the speech segmentation for alignment. However,
the articulatory and acoustic signals evolve at different rates and a
synchronous frame-level analysis ignores the asynchrony between
the two streams. For e.g., the articulatory evidence for a stop may
occur much earlier in time than the corresponding acoustic evidence
(phonetic symbol).

In this paper we present an information theoretic approach to in-
vestigate the dependencies between the discrete phone labels and the
articulatory and acoustic speech streams. Our objective is two-fold,
one is to explore appropriate signal representations for the speech
production signals and the other is to evaluate if the speech produc-
tion signals provide complementary information for speech recog-
nition. We perform the analysis with the mutual information (MI)
which is widely used as an objective metric in classi cation and es-
timation problems [6, 7]. We also present phonological classi cation
experiments based on acoustic and articulatory representations that
further corroborate the usefulness of modeling the speech production
signals for recognition. Finally, we explore varying window lengths
for articulatory signal representation, assessed in terms of MI to nd
the optimal analysis window length to capture the asynchrony be-
tween the acoustic and articulatory streams.

2. ARTICULATORY DATA ACQUISITION AND
PROCESSING

We have recently collected a unique articulatory data set of sponta-
neous speech dialogs from a native American English speaker. In
that regards, it is distinct from the MOCHA database [8] which pro-
vides EMA sensor measurements for read TIMIT sentences. We
believe that the additional stream of information from articulatory
data can be especially useful in modeling spontaneous speech and
help compensate for the weakness of relying on the acoustic model
alone.

We used the magnetometer point-tracking technology (EMA) to
measure the articulatory movements. The EMA technique provides
ideal temporal resolution for examining perturbations that occur at
phrase junctures and under focal accent, offers well-established an-
alytical approaches to speech kinematics, and is also accompanied
by high-quality audio signal recordings. The articulatory data com-
prises two-dimensional continuous time signals, that capture the rel-
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ative movement of the production of speech along different positions
of the vocal tract. The articulatory sensors were placed on the sub-
ject’s jaw (JAW), lower lip (LL), upper lip (UL), tongue tip (TT),
tongue body (TBL) and tongue dorsum (TD). Acoustic and articu-
latory traces were simultaneously recorded at sampling rates of 200
Hz and 16 KHz, respectively. The data was subsequently corrected
for head movements through rotation and translation to ensure that
the two reference coils (upper incisor and bridge of the nose) were
coincident across all frames for the speaker. A further rotation was
performed to align the bite plane with the x-axis and a nal transla-
tion to set origin at the upper incisor.

The speech data consists of conversational-style speech from a
native American English (AE) male subject recorded in a dialog sce-
nario. The recording sessions were moderated by an AE female in-
terlocutor and the subject had no previous knowledge of the topics.
14 sessions on different topics were recorded, each lasting about 8
minutes. The audio of both sides of the conversation was recorded.
The spontaneous speech dialogs were manually segmented into indi-
vidual utterances and transcribed at the word level with appropriate
dis uency tags. This process generated about 500 individual utter-
ances. The speech signals were then aligned to the word level tran-
scriptions using an ASR. The acoustic model used for this purpose
was trained on 220 hours of spontaneous speech from the Fisher En-
glish Corpus, and adapted to the subject’s speech through maximum
likelihood linear regression (MLLR). The resulting phonetic seg-
mentation of the speech signal obtained from the automatic forced
alignment was used as a reference in the analysis of the production
time-series signals (JAW, LL, UL, TT, TBL, TD). The next section
presents two feature representation schemes for the raw speech pro-
duction data used in subsequent analysis and classi cation.

3. BASIC ANALYSIS OF SIGNAL REPRESENTATION FOR
CLASSIFICATION

We consider two signal representation schemes, one a time domain
analysis, similar to that recently presented in [3] using similar raw
production data, and the second a frequency domain based on a uni-
form lter-bank analysis. We implemented a frame-by-frame ap-
proach for feature extraction where, for each phone segment, we
generated a sequence of overlapping windows with 10ms frame pe-
riod, and 20ms window length. This offers reasonable resolution in
time to capture some of the coarticulation events in the production
signals, consistent with previous studies [3].
3.1. Time Domain Analysis
The raw speech production signals measured from the EMA setup
are time varying x- and y- coordinates of the articulators produced
every 5ms. For the time domain analysis we considered the articula-
tory position, velocity and acceleration data for each frame period of
10ms. To ensure time synchronous pairs of acoustic and articulatory
data, we used every second position vector. This is similar to the
approach described in [3] for deriving the feature vectors. Thus, a
3-dimensional vector time series is generated per coordinate x- and
y- for each production signal stream.

3.2. Frequency Domain Analysis
In this setting, we used wavelet packets (WP) iterating a Daubechies’
two channel lter bank block (db4) with balanced full tree-structure
[9], as a exible way of implementing uniform lter bank analysis.
We conducted this analysis for each x- and y-spatial coordinate of the
production signals. Coef cients obtained from the wavelet packet
analysis provide the highest possible frequency resolution for a 20ms
analysis window, which is conceptually equivalent to an STFT type

of analysis. Then, the energy of every coef cient was used as a
feature, where given the window size in this setting, it generates a
4 dimensional vector (4 uniform bands) per coordinate x- and y- for
each production signal stream.

3.3. Mutual Information Estimation

For measuring the level of statistical dependency between the ar-
ticulatory feature vector X(u) and the discrete phone label Y (u),
we consider the mutual information betweenX(u) and Y (u) as our
delity criterion. MI presents a strong relationship with the prob-
ability of error of Bayes classi cation approaches, mainly because
of Fano’s inequality [10], which characterizes a lower bound on the
probability of error for any decision framework that tries to infer
Y (u) as a function ofX(u) [10].

The analysis schemes presented in the previous sub-section re-
sult in one observation vector for each frame along with the cor-
responding phone label information. The observation vector is the
concatenation of the features obtained from the different articu-
latory signal streams. This information is represented by T =
{(xi, yi) : i = 1, .., n}, xi taking values in R

K and yi in a discrete
alphabet denoted by Ay . Given that we do not explicitly have ac-
cess to the joint distribution PX,Y , but instead have a family of iid
realizations T , we need to estimate the MI based on T .

We address the MI estimation by quantizing the feature obser-
vation space with a nite number of quantization bins, then estimat-
ing the observation-class distribution in the newly quantized nite
alphabet space using standard maximum likelihood criterion — fre-
quency counts — [11]; and nally applying the discrete version of
the MI [10]. More precisely, let us denote Q(·) : R

N → Ax, where
|Ax| < ∞, is the quantized function, then the MI is given by:
I(Q(X), Y ) =

∑

q∈Ax,y∈Ay

P (Q(X) = q, Y = y) · log
P (Q(X) = q, Y = y)

P (Q(X) = q)P (Y = y)
,

(1)

where Q(X)(u) = Q(X(u)) is the quantized observation ran-
dom variable. It is well known that I(Q(X), Y ) ≤ I(X, Y ), be-
cause quantization reduces the level of dependency between ran-
dom variables. On the other hand, cleverly increasing the reso-
lution of Q(·), implies that I(Q(X), Y ) converges to I(X, Y ) as
the number of bins tends to in nity [12]. However, this result as-
sumes that we know the joint class-observation distribution, which
implies having an in nite amount of training data and a consistent
learning approach. Consequently, for the nite training data sce-
nario there is a tradeoff between how precisely we want to estimate
I (Q(X), Y ), versus how close we want to be to the analytical upper
bound I(X, Y ). We decided to have a resolution of Q(·) that guar-
antees good estimation of the joint observation-class distribution,
and consequently a precise lower bound estimation for I(X, Y ). K-
means vector quantization was used to characterize the quantization
mapping [11, 10]. K-means is designed to minimize the mean square
error between Q(X)(u) and X(u), for a given number of quantiza-
tion bins, and consequently, is a good adaptive way of performing
this mapping.

3.4. Experiments: Mutual Information Analysis

In this section, we calculate the MI between each of the oral articu-
lators1 and phone labels using the framework described above.

1Evaluating MI for all the signals together leads to data sparsity due to
the large dimensionality of the resulting feature vector
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The quantized MI, Eq.(1), is calculated for each articulatory
signal (JAW, LL, UL, TT, TBL, TD), considering the two types
of analyses presented previously. The entire dataset consisting
of 500 utterances and corresponding to about 1 hour of speech-
production signals, was used for the observation-class probabil-
ity estimation. For each production signal stream, K-means vec-
tor quantization with 500 prototypes was used for both the 8-
dimensional observation vector, in the lter-bank case, and the 6 di-
mensional observation vector, in the time-domain analysis. More
than 200,000 realizations of the observation-class random vector
(Q(X)(u), Y (u)) were used for having good empirical estimation
of {P (Q(X) = q, Y = y) : 1 ≤ q ≤ 500, y ∈ Ay}.

The same type of analysis was conducted for the speech sig-
nal, in order to have a reference value for the MI objective indica-
tor. For this, we considered 13-MFCCs for the 20ms window length
and K-means with same number of quantization bins. Delta and ac-
celeration coef cients were not considered, because these implicitly
introduce information akin to a longer window context. Hence, for
a fair comparison we decided to restrict it to similar analysis (20ms
window length, 10ms frame period) as that performed for the articu-
latory signals.

lter bank time-based

JAW 0.170281 0.342324
UL 0.237575 0.399443
LL 0.268569 0.455060
TD 0.362222 0.628452
TT 0.332358 0.669006
TBL 0.351672 0.721166
speech 1.272 n/a

Table 1. Mutual information of the lter bank and time-based analyses with
respect to the phone label per production signal

Table 1 presents estimated MI values for the lter-bank and
the time-domain analyses. In particular, in both the time domain
and the lter-bank representations, TD, TT and TBL trajectories —
production signals capturing the dynamics of the tongue — clearly
demonstrate higher dependency with the phone-class information
than JAW, UL and LL signals. This can be expected as the tongue
movements are strongly correlated with vowels [1].

The time-domain analysis turns out to be more effective in cap-
turing the relevant discrimination information provided by the pro-
duction signals. One of the reasons for the lter-bank approach not
performing as well for this analysis (restricted window length) is
that, it only considers energy of the signals in the frequency bands
and, consequently, it is a lossy representation of the original produc-
tion signals. In contrast, for the time-domain analysis it is possible to
recover the original signal from the time-based signal representation.
It is important to note that these results are valid assuming a 20ms
analysis window. This window size limits the level of frequency res-
olution obtained for the lter-bank representation, and also the level
of long-term dependency obtained from the production signals in the
time domain. This issue is addressed in more detail in Section 4.

The mutual information considering the whole 13-dimensional
MFCC feature vector is 1.272. This value is greater than the MI
of any single point-tracking production signal, which is reasonable
considering that individual articulators provide only partial produc-
tion information. However, it is notable that the MI of the production
signals in Table 1 are still signi cant relative to the acoustic-phone
MI: in particular, the time domain analysis has values of MI across
each of the different production signals in the range of [31% - 57%]
relative to the acoustic speech MI.

These results suggest that the oral production signals from EMA

carry valuable phone discrimination information albeit not to the ex-
tent of the acoustic feature vector. In this direction, it is important
to investigate if the level of MI present in each of the oral articu-
lators translates to an improvement in overall phone classi cation
accuracy. This is the focus of the next section.

3.5. Experiments: Phonological Factor Classi cation
In this section we evaluate classi cation performances using the di-
rect production data with respect to the acoustic speech data, for cat-
egorizing different phonological (or articulatory feature) classes. For
these experiments we use the time domain representation [3] based
on our previous MI analysis.

Phonological classes are production oriented descriptions of
phonetic units. They provide a way to cluster the phonetic labels
based on gross-discretized description of the production formation
process in the vocal tract. We consider manner (6 classes), place (10
classes), front-back (3 classes) and rounding (4 classes) as categories
for the classi cation task (Table 2). From a practical point of view,
these tasks are simpler than phone classi cation, as we can better ad-
dress the sparseness of training data (we have just 1 hours of data).
In considering these global categorization classes we have less es-
timation error effects and hence get more reliable information from
the data, which was a critical issue that we had to address during all
the analysis.

Phonological Classes Phonological labels
Manner vowel, lateral, nasal,fricative,

approximant,silence
Place dental, coronal, labial,retro ex,

velar,glottal, high, mid, low, silence
Front-back front, back, nil, silence
Rounding +round, -round, nil, silence

Table 2. Phonological classes
The dataset was partitioned into training and test sets, 466 utter-

ances for the training part and 37 utterances for the testing part (1
session). Class label for every category was obtained based on the
phone-level transcription of the data and the canonical rule-based
mapping from phone label to phonological factor. 36 dimensional
time domain feature vectors were created for every frame by con-
catenating information for all the articulators [3]. Hidden Markov
models (HMM) were trained using HTK 3.0 and standard EM-
learning algorithms. Context independent HMMs with 3 observable
states and 16 mixture components per state were used for both the
production and acoustic features. We compare results with respect
to the speech signal using the 13-MFCCs, in order to have the same
window length (20ms) in both scenarios.

Performance for the different phonological factors are presented
in Table 3. From these results it is evident that the production sig-
nals demonstrate better performance than their acoustic counterparts
for almost all the phonological factor classi cations (manner, place
and font back) and very close to speech performance for the round-
ing task. Overall from the analysis of the type of errors incurred on
the production side, it is interesting to note that direct speech pro-
duction measurement had signi cantly fewer false alarm events than
the speech side, in terms of insertion, across all the dimensions of
classi cation explored. Consequently, based on these results, deci-
sions based on the direct-measurements on average can be consid-
ered more reliable than decisions based on the acoustic information.
However, the articulatory signals exhibit higher rate of deletions, pri-
marily due to the inability of the short analysis window to capture the
long-term dependencies. The results offer further evidence of the
complementary nature of the production measurements for phone
classi cation.
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ACC C D S I
Manner production 45.34 899 612 249 101

speech 35.11 1185 229 346 567
Place production 46.42 974 509 275 158

speech 28.24 1172 181 407 675
Front-back production 57.27 1075 553 132 67

speech 53.69 972 638 150 27
Rounding production 52.08 933 749 73 19

speech 57.84 1063 580 117 45

Table 3. Phonological factor classi cation performance using acoustic and
direct production data. C: correct, I: insertions, D: deletion, S: substitutions
and ACC: classi cation accuracy (100 ∗

(C−I)
N

)

It is important to mention that the results presented thus far
are restricted to frame-by-frame type of analysis with xed window
length (20ms), which is far from being the optimal way of represent-
ing the production signals for phone classi cation. Consequently,
this preliminary analysis is positively biased toward the acoustic side
considering that the forced alignment was made based on it for the
mutual information computation. To maximize the discrimination
bene t offered by the direct production data, the frame-by-frame ap-
proach needs to be relaxed and one needs to explore the long-term
dependencies of the articulators that would be more relevant for the
phone classi cation task. We present important preliminary results
for addressing this issue in the following section.

4. ANALYSIS OF TIME LOCALIZATION OF
ARTICULATORY SIGNALS

The 20ms window length chosen in previous experiments is some-
what arbitrary for articulatory data analysis and relevant long-term
dependencies between the articulators are not taken into account. By
relaxing this constraint, the idea is to nd a reasonable window of
analysis that captures on average, signi cant information related to
the acoustic-phonetic task without compromising much on the “com-
plexity” of the problem, in terms of dimensionality. Again mutual
information is used as a delity discrimination indicator for investi-
gating the quality of the feature space.

In order to evaluate time localization properties, we consider raw
temporal data at different window lengths (20ms, 40ms, 80ms and
160ms) in the 10ms frame rate setting. For this raw data, dimension-
ality reduction was computed based on principal component analysis
(PCA) [11], which generates observation vector of same dimension
across the different window sizes. Mutual information was estimated
for all the window dependent feature vectors using the previously
presented non-parametric approach, Section 3.3. Ensuring the same
dimension and amount of training data is crucial for a fair compari-
son based on our estimation of the mutual information. The results
are presented in Figure 1.

From Figure 1, one can infer that there is a signi cant gain in MI
from 20ms to 40ms and also an important improvement from 40ms
to 80ms; however beyond 80ms the delity gain is marginal 2. The
results show the same relative behavior across all production signals
in the analysis. Note that the relative importance of the articulators
in terms of mutual information is consistent with results presented in
Section 3.4. Finally, the obtained optimal time range (80ms-100ms)
brings up the problem of optimal signal representation, because we
are now in a scenario where the tradeoff between feature complexity
and representation quality needs to be addressed.

280-160ms is comparable to the time range used for the speech signal,
considering the effect of delta and acceleration coef cients.

20 40 60 80 100 120 140 160 180

0.3

0.4

0.5

0.6

0.7

0.8

Mutual Information across window lengths

window lenght (ms)

M
ut

ua
l I

nf
or

m
at

io
n

JAW
UL
LL
TT
TBL
TD

Fig. 1. Mutual Information across different window lengths for all the dif-
ferent production signals.

5. CONCLUSIONS
We presented an information theoretic analysis of articulatory sig-
nals collected via electromagnetic articulograph (EMA) for the prob-
lem of phonetic classi cation. The mutual information analysis
show that EMA articulatory measurements provide signi cant phone
discrimination information relative to the acoustic speech signal.
We further corroborated the complementary nature of speech pro-
duction signals by performing phonological classi cation. Finally,
we explored the effect of varying the analysis window length to
capture the long-term dependencies of the articulators relevant for
phone discrimination. We are currently addressing the problem of
dimensionality reduction and optimality of feature representation for
longer window sizes (80-100ms). We are also working on schemes
to jointly model the asynchronous feature streams using graphical
models.
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