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ABSTRACT

Although Hidden Markov Models (HMMs) provide a rela-

tively efficient modeling framework for speech recognition,

they suffer from several shortcomings which set upper bounds

in the performance that can be achieved. Alternatively, linear

dynamic models (LDM) can be used to model speech seg-

ments. Several implementations of LDM have been proposed

in the literature. However, all had a restricted structure to

satisfy identifiability constraints. In this paper, we relax all

these constraints and use a general, canonical form for a lin-

ear state-space system that guarantees identifiability for arbi-

trary state and observation vector dimensions. For this sys-

tem, we present a novel, element-wise Maximum Likelihood

(ML) estimation method. Classification experiments on the

AURORA2 speech database show performance gains com-

pared to HMMs, particularly on highly noisy conditions.

Index Terms— Speech Recognition, Modeling, Identifi-

cation

1. INTRODUCTION

Hidden Markov Models (HMMs) dominate in today’s speech

recognition engines. This is primarily attributed to their abil-

ity to efficiently model the time varying statistical characteris-

tics of the speech signal through a set of discrete states. How-

ever, they still posses many modelling inadequacies that de-

rive from the numerous assumptions that are made to simplify

the speech recognition problem. For instance, dynamic infor-

mation in HMMs is included through the time-derivatives in

the observation vector under the false frame-independence as-

sumption and the spatial correlation of the observation vector

is ignored when diagonal covariance matrices are considered.

This work is motivated from our belief that these assump-

tions set upper limits in the progress that can be made when

using HMMs in speech recognition. In an effort to improve

robustness, particularly under noisy conditions, we examine

new modeling schemes that can explicitly model time and

This work was partially supported by the EU-IST FP6 research project
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spatial correlations such as the linear dynamical models (LDM).

LDMs were first proposed to be used for speech recognition

in [1]. They characterize complete speech segments such as

words, phonemes or sub-phoneme units with a linear state

evolution process and a linear observation process. Thus, they

can be seen as a variation of segment-based modeling which,

in turn, can be considered as a generalization of the HMMs

with a continuous state-space instead of a discrete one[2].

There are several variations of the LDMs that can be found

in the literature. In [1] LDMs were used to obtain a smoothed

realization of a Gauss-Markov model. In [3] and [4] several

statistical modeling techniques such as factor analysis (FA)

and principle component analysis (PCA) are presented as spe-

cial cases of a general LDM. Other variations are also dis-

cussed in [5]. In all cases, several modeling constraints were

applied in an effort to obtain good system convergence, sta-

bility and identifiability. However, these constraints alter the

properties of the model, and diminish the benefits of the gen-

eral system architecture.

In this paper, we introduce a generalized linear dynamic

system in an identifiable canonical form. The system is a mul-

tivariate state-space linear dynamic model which follows the

identifiable form that was proposed by Ljung [6]. We begin

by introducing the linear system and its parametric structure.

We describe our novel element-wise estimation method based

on the Expectation-Maximization (EM) algorithm. Finally,

we present classification results on the AURORA2 speech

database.

2. THE LINEAR DYNAMIC SYSTEM

The LDM is described from the following pair of equations

xk+1 = Fxk + wk (1)

yk = Hxk + vk (2)

where the state xk at time k is a (n × 1) vector, the obser-
vation yk is (m × 1) and wk, vk are uncorrelated, zero-mean
Gaussian vectors with covariances

E{wkw
T
l } = Pδkl (3)

E{vkvTl } = Rδkl (4)
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In the above equation δkl denotes the Kronecker delta and
T denotes the transpose of a matrix. The initial state x0 is
Gaussian with known mean and covariance μ0,Σ0. Equation
(1) describes the state dynamics, while (2) shows a prediction

of the observation based on the state estimation.

The parametric structure of our multivariate state-space

model has the following identifiable canonical form for the

case in which xk is a 5× 1 vector and the observation vector
yk is a 3× 1 vector.

F =

⎡
⎢⎢⎢⎢⎣

0 1 0 0 0
× × × × ×
× × × × ×
0 0 0 0 1
× × × × ×

⎤
⎥⎥⎥⎥⎦

(5)

H =

⎡
⎣
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0

⎤
⎦ (6)

The number of rows with×’ s in F represents the free pa-
rameters of the matrix and equals the size of the output vector

m. The ones in matrixH are equal to the number of the rows

in F that are filled with free parameters, and their position is

related to the location of these rows in F .
To construct the form of the state transition matrix F we

follow the process described in [6]. First, we set its ele-

ments along the superdiagonal equal to one and the remain-

ing elements are zeroed. Then, we choose arbitrarily the m
row numbers ri to be filled with free parameters, where i =
1, ...,m. There is only one constraint, that rm = n, wherem
denotes the dimension of the observation and n the dimension
of the state vector. In addition, we set r0 = 0.

The observation matrix H is then constructed as follows.

First, we define H to be m × n in size and filled with zeros.
Then we set each row i = 1, ...,m of the H matrix to have a

one in column ci = ri−1 + 1. For instance, for the example
shown in (5) and (6) we get:

r1 = 2⇒ c1 = r1−1 + 1 = r0 + 1 = 1
r2 = 3⇒ c2 = r2−1 + 1 = r1 + 1 = 3
r3 = 5⇒ c3 = r3−1 + 1 = r2 + 1 = 4.
Hence, the observation matrix H will have ones in columns

1, 3 and 4 for its rows 1, 2 and 3, respectively.

Ljung [6] proves that the above canonical form is identi-

fiable if and only if it is also controllable. Furthermore, this

canonical form does not impose any loss of generality in the

LDM, that is, any state-space system described by equations

1 and 2 can be transformed to have the structure of equations

5 and 6.

3. ELEMENT-WISE ESTIMATIONWITH EM

The matrices of the LDM presented in section 2 contain, by-

construction, free parameters at very specific positions. An

estimation algorithm for linear state-space systems that is based

on the Expectation-Maximization (EM) algorithm was intro-

duced in [1]. This algorithm assumed that all matrices θ =
F,H, P,R are filled with free parameters. In our case, how-

ever, the free parameters of the system are located in spe-

cific position, hence the estimation must be performed in an

element-wise fashion. Given the observationsY = [y0 . . . yN ]
and the state vectorsX = [x0 . . . xN ], the ML estimates of θ
are obtained by minimizing the quantity:

L(X,Y, θ) =

−
N∑
k=1

{
log |P |+ (xk − Fxk−1)TP−1(xk − Fxk−1)

}

−
N∑
k=0

{
log |R|+ (yk −Hxk)TR−1(yk −Hxk)

}

It can be shown that the estimates of the system’s param-

eters are given by:

F̂ij =

M∑
c=1

{
(cof(P̂ic))(S

(4)
cj )

}

(cof(P̂ii))(S
(3)
jj )

−

M∑
c=1,c �=i

{
(cof(P̂ic))(F̂cj)(S

(3)
jj )

}

(cof(P̂ii))(S
(3)
jj )

−

M∑
c=1

{
(cof(P̂ic))

M∑
r=1,r �=j

{
(F̂cr)(S

(3)
rj )

}}

(cof(P̂ii))(S
(3)
jj )

(7)

P̂ij = (S
(2)
ij )−

M∑
r=1

(F̂ir)(S
(4)
jr )−

M∑
r=1

(F̂jr)(S
(4)
ir )

+
M∑
c=1

M∑
r=1

(F̂ic)(F̂jr)(S(3)cr ) (8)

R̂ = S(5) − S(6)(S(1))−1(S(6))T (9)

where cof(P̂ic) is the cofactor of the element P̂ic of the co-
variance P̂ . Index i denotes the i − th row of a matrix, and
j denotes the j − th column. The sufficient statistics that in-
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volved in the previous equations are given by[1]

S(1) =
1

N + 1

N∑
k=0

xkx
T
k (10)

S(2) =
1
N

N∑
k=1

xkx
T
k (11)

S(3) =
1
N

N∑
k=1

xk−1xTk−1 (12)

S(4) =
1
N

N∑
k=1

xkx
T
k−1 (13)

S(5) =
1

N + 1

N∑
k=0

yky
T
k (14)

S(6) =
1

N + 1

N∑
k=0

ykx
T
k . (15)

The statistics shown above require the following quantities at

each iteration p:

Eθ(p){ykxTk |Y} = ykx̂k|N (16)

Eθ(p){ykyTk |Y} = yky
T
k (17)

Eθ(p){xkxTk−1|Y} = Σk,k−1|N + x̂k|N x̂Tk−1|N (18)

Eθ(p){xkxTk |Y} = Σk|N + x̂k|N x̂Tk|N . (19)

Equations (7) through (9) form the Maximization step of the

EM algorithm. For the Expectation step of the EM algo-

rithm we need to compute the required statistics, and we use

the fixed interval smoothing form of the Kalman filter (RTS

smoother) [7]. It consists of a backward pass that follows the

standard Kalman filter forward recursions [8]. In addition, we

compute also the cross-covariances proposed by Digalakis [1]

in both the forward and the backward pass.

4. APPLICATION TO SPEECH RECOGNITION

A straightforward way to model speech units using LDMs

is to train separate segment-specific models, each one cor-

responding to a sub-word or sub-phoneme unit. The corre-

lation between consecutive frames within the same segment

is modelled with the same set of parameters. Furthermore,

the inter-segment correlation is also captured since the initial

state estimate of a segment derives from the last state esti-

mate of the previous segment. The process is also illustrated

in Figure 1 for a 4 segment example.

During classification, each model segment is classified

based on the log-likelihood computed by:

L(Y, θ) = −
N∑
k=0

{
log |Σek(θ)|+ eTk (θ)Σ

−1
ek
(θ)eTk (θ)

}
+ C

Fig. 1. Example of an LDM with 4 segments.

where eTk (θ), Σek(θ) is the prediction error and its covariance
obtained from the Kalman filter equations and C is a constant.

5. EXPERIMENTS

We have performed a series of word-classification experiments

in order to validate our LDM system for speech recognition

and evaluate the estimation algorithm. In specific, we used

the AURORA2 speech database[9], which is a connected digit

corpus based on TIDIGITS, downsampled to 8KHz and with

several types of noise artificially added at several SNRs. The

front-end uses a total of 13 Mel-warped cepstral coefficients

plus energy. In some experiments we also augmented the ob-

servation vector with the first (δ) and second order derivatives
(δδ).

We used 11 word-models corresponding to the words in

the AURORA2 corpus (digits 1 to 9, zero and oh). Each word-

model has a number of time-invariant regions (segments) rang-

ing from 2 to 8, depending on the phonetic transcription of

each word. Table 1 shows the number of regions for each

word-model that we considered.

one two three four five six

6 4 6 6 6 4

seven eight nine oh zero

8 4 6 2 6

Table 1. Number of regions for each word-model

The first issue in implementing the dynamical system is

the dimensionality of the state-space. Based on the general

canonical forms of the LDM that we examine, the size of the

state-vector can be equal or larger than the size of the obser-

vation vector. When the state and observation vectors are at

equal size, the observation matrix becomes the identity matrix

and the observation vector is just a noisy version of the state

vector. Even in this case, our scheme relaxes the constraints
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of other approaches (i.e. in [1]).

Another important issue is the initialization of system pa-

rameters. The noise covariance matrices are initialized ran-

domly, while the initial state-transition matrices, and the co-

variance of the initial state x0 are directly estimated from the
observations.

As far as the classification is concerned, at this moment

we do not perform any search over all possible segmenta-

tions, but we keep the true word-boundaries produced by an

HMM fixed. We do search, however, over all possible word

histories given the segmentation. To speed-up the classifica-

tion process we apply a suboptimum search and pruning al-

gorithm which keeps the 11 most probable word-histories for

each word in the sentence.

For our experiments, we used a clean training set con-

sisting of 104 gender-balanced speakers and 8444 sentences.

The evaluation was done on a separate test set defined as the

AURORA2-A test set, with subway additive noise at several

SNRs, which consisted of 1000 sentences from the training

speakers. Table 2 summarizes the classification performance

of the LDM for several SNR values. As can be seen, append-

ing the derivatives in the MFCCs results in performance gains

which increase as the noise level rises.

AURORA 2/ LDM

Subway Mfcc,energy +δ+δδ
clean 97.53% 97.61%

SNR20 93.23% 95.12%

SNR15 87.91% 91.13%

SNR10 76.29% 82.69%

SNR5 54.87% 63.56%

Table 2. Word-classification performance of the LDM system

AURORA 2/ HMM

Subway Mfcc,energy +δ +δδ
clean 97.19% 97.57%

SNR20 90.91% 95.71%

SNR15 80.09% 91.76%

SNR10 57.68% 81.93%

SNR5 36.01% 64.24%

Table 3. Performance of an HMM system

To compare the performance of our system to HMMs,

we also performed a set of classification experiments using

the standard HTK configuration. Each word was modelled

as a 16-state continuous density HMM with a mixture of 3

Gaussian components associate in each state. The front-end

configuration and the word-boundaries were the same as with

the LDM. The recognition accuracy of the HMM is shown

in Table 3. Without derivatives, the LDM outperforms sig-

nificantly the HMM, especially as the SNR level decreases.

When derivatives are used for both models, their performance

is similar.

6. CONCLUSIONS

In this paper, we presented the application of linear dynamic

models with general, canonical forms for their parameters

in speech recognition and we showed a novel and efficient

element-wise Maximum Likelihood estimation. We evaluated

our scheme with a series of classification experiments on the

AURORA2 speech database. Since we have now introduced a

methodology to use general identifiable forms of state-space

systems in speech recognition, we plan to investigate in the

future several combinations of state and observation vector

dimensions.
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